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ABSTRACT
Using the boundary integral equation method with the slip-weakening friction law, we
investigate the effects of the initial stress field and the critical slip-weakening distance
on the rupture selectivity on the 3D buried branched faults. The numerical results show
that after reaching the bifurcation line between the main fault and the branched faults,
rupture continues to propagate on one or both bifurcation planes (BPs), with rupture on
one plane more favorable than the other. The initial stress distribution plays a decisive role
in the selection of the favorable BP (FBP), and there is a critical status of stress distribution,
around which rupture propagates on both planes, whereas the FBP switches between the
two. For a given fault geometry, the critical status of initial stress, which is described by a
ratio Fp between normal stresses, is related to the critical slip-weakening distance Dc .

KEY POINTS
• We investigate what parameters affect the rupture

selectivity of branched faults.

• We use a stress field and critical slip-weakening distance
phase diagram to analyze branch fault selectivity.

• Rupture speed is critical in causing rupture of a branch

that is less favorably oriented in the stress field.

Supplemental Material

INTRODUCTION
Fault branching phenomenon has been increasingly observed
in natural fault systems with complex geometry, based on kin-
ematic inversions and direct observation (Archuleta, 1984;
Sowers et al., 1994). It has an important impact on the rupture
propagation directivity and the magnitudes of earthquakes.
Therefore, studying the influence of fault branching on the
rupture propagation and the key controlling factors on
branched faults are important for understanding earthquake
source processes. So far, numerical simulation of dynamic rup-
ture has been applied to complex fault systems including fault
branching (Oglesby et al., 2003; Fukuyama and Mikumo, 2006;
Ando et al., 2017; Ando and Kaneko, 2018).

Dynamic spontaneous rupture depends on the stress state
on the fault and is controlled by the friction criterion. For a
branched fault in a uniform initial external tectonic stress field,
the initial state of stress on each bifurcation plane (BP) can be
analyzed by the Mohr’s circle. The state of stress determines
which BP is more prone to break (Aochi et al., 2000, 2002;

Kame et al., 2003). In a dynamic rupture propagation, dynamic
stress accumulation produced by previous ruptures affects the
state of stress on the fault. Poliakov et al. (2002) studied the
effect of the rupture velocity on the dynamic stress field at
the rupture tip. When the rupture reaches the intersection with
different propagation velocities, rupture propagation behaves
differently (Kame et al., 2003; Bhat et al., 2004, 2007; Fliss et al.,
2005). The branching angle is the key factor describing the
geometry of the branched fault. For a uniform tectonic stress
field, different branching angles correspond to different initial
stress states. On the other hand, because of the interaction
between the BPs, the rupture propagating on one BP produces
a stress reduction, which inhibits the rupture propagation on
the other. This is usually called the “stress shadow effect”
(Yamashita and Umeda, 1994). Undoubtedly, the branching
angle is a key factor on the rupture interaction between the
BPs (Aochi et al., 2000; Kame et al., 2003).

Because of the interaction between the BPs, in most cases
the ruptures on branched faults choose to propagate only on
one of the BPs after reaching the intersection and stop spread-
ing on the other BP. The patterns of rupture on branched faults
are highly influenced by the choice of BP. Numerical simula-
tions of large earthquakes showed that fault branching plays an
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important role in complex fault systems and affects the fault-
plane geometry and magnitudes of earthquakes (Ando et al.,
2017; Ando and Kaneko, 2018). The state of stress on the fault
plane determines the rupture behavior. For a given bifurcation
angle, the initial state of stress determines which BP is more
breakable, which can be analyzed using the Mohr’s circle.
However, when the rupture propagation is fast enough, the
rupture propagates simultaneously on both BPs even if there
is mutual inhibition (Kame et al., 2003; Fliss et al., 2005),
because of the strong dynamic stress accumulation on the main
fault plane.

In this study, we numerically simulate the spontaneous rup-
ture on 3D branched faults by applying the boundary integral
equation method (BIEM) with the slip-weakening law to inves-
tigate the behavior of rupture propagation on the BP. For the
behavior of rupture propagation on the BP, we explore the
influences of the initial stress and the slip-weakening distance
on the rupture selectivity of branched faults. Although several
studies have focused on the effects of the initial stress (Aochi
and Fukuyama, 2002; Kame et al., 2003; Duan and Oglesby,
2007; DeDontney et al., 2012), most of them are based on
2D models and only specific stress field distributions are con-
sidered. More general and in-depth discussions on the influ-
ence of the initial stress are required. Actually, effects of 3D
and finite thickness of fault play an important role in dynamic
ruptures. The fault thickness has a decisive influence on the
transition of crack-like to pulse-like, and will affect the propa-
gation behavior of the rupture (Day, 1982). Critical slip-weak-
ening distance is an important friction parameter in dynamic
rupture simulations, and its value affects the behavior of rupture
propagation, including the speed of rupture propagation and
rupture energy radiation efficiency (Mikumo and Yagi, 2003;
Tinti et al., 2004; Fukuyama and Mikumo, 2007; Kaneko et al.,
2017). Here, we explore the influences of the initial stress field
distribution and the critical slip-weakening distance on the 3D
branched fault with finite thickness and a given bifurcation
angle, and obtain a phase diagram to conveniently analyze the
rupture selectivity. Because our focus is on the effect of geometry
of branched fault, we did not consider the effect of free surface to
avoid complex mixed effects. On the other hand, previous stud-
ies have shown that when the fault is located more than 1 km
under the surface, the effect of free surface on rupture propa-
gation becomes very small and can be neglected (Zhang and
Chen, 2006). In this stage, we only consider buried faults on
which the effect of free surface can be neglected.

NUMERICAL METHOD AND FAULT MODEL
We use the BIEM with an unstructured mesh (Qian et al.,
2019). The discretization form of BIEM as follows:

EQ-TARGET;temp:intralink-;df1;41;107Tmp � T0
m �

XNX

n�1

Xp

q�1

VnqKmp=nq; �1�

in which Tmp is the stress of the element m at time p, T0
m is the

initial stress, and Vnq is the slip rate of the element n at time q.
The integration kernel Kmp=nq is the stress Green’s function
(Feng and Zhang, 2017) in whole space, which represents
the stress response between fault elements. The BIEM is used
together with the slip-weakening friction law to obtain the slip
rates and stresses on the fault elements. Given the fault geom-
etry as well as the initial tectonic stress field and the friction
parameters, the spatiotemporal evolution of the rupture proc-
ess can be obtained.

The branched fault model that we consider in this study
is shown in Figure 1a. The entire branched fault system
consists of three planar faults: a main fault of dimension
30 km × 10 km and two bifurcated faults both of dimension
15 km × 10 km. Therefore, the fault has a finite thickness of
10 km. The minimum inscribed circle radius of the triangular
elements Δs � 249 m. The medium parameters we used are
set as follows. The P and S velocities are 5.6 and 3:2 km=s,
respectively, the density is 3000 kg=m3, and the timestep
Δt � 0:044 s. Although the spatial grid size and timestep
are not fine enough, they conform to the basic stability con-
ditions. Because we are using BIEM, the current grid size is
sufficient for the small Dc value. We verified this with some
experiments in the supplemental material to this article. To
initiate the rupture, we assumed that the initial shear stress in
the nucleation zone, usually called “asperity,” is slightly greater
than the fault’s peak strength (about 1.05 times). The rupture
in inplane mode starts from a nucleation zone located on the
main fault A and propagates outward. We set an unbreakable
barrier at the edge of fault as the boundary condition. For
the BIEM, there is no numerical singularity at the intersection
node, only the stability conditions need to be satisfied, that is,
no element will cross the intersection. When the rupture front
reaches the intersection line, it selects one of the bifurcated
faults (B or C) in most cases to continue according to different
conditions.

As shown in Figure 1b, a uniform initial stress field is con-
sidered. The normal and shear stresses are assumed to be in z
and x directions, respectively, and hence the slip is only along
the x direction. The normal stress is compressive, that is, −σ, in
which σ is the absolute value of the normal stress. Given the
initial stress element on plane A σAzz , σAxx , and τAzx, the maxi-
mum principal stress Smax can be determined, with Φ being
the angle between plane A and the direction of the maximum
principal stress. The initial stress field on planes B and C can be
described by the normal stress −σn and shear stress τ, which
are related to the bifurcation angle φ. Kame et al. (2003) stud-
ied the 2D dynamic rupture for four specific values of Φ on
branched faults and the results showed that different Φ-values
may cause the rupture to propagate along different BPs. In this
study, distribution of initial stress is investigated to find out
how the initial stress field affects the rupture selectivity on
the branched faults, and whether there is a critical stress field
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distribution that causes the rupture to propagate on both BPs
instead of propagating on only one of the BPs.

Fault rupture is controlled by the friction law. The slip-
weakening law (Ida, 1972) is adopted to describe the relation-
ship between strength and slip on the fault plane, as shown in
Figure 1c. μd and μs are the dynamic and static friction coef-
ficients, respectively, and their products with the normal stress
are the residual strength and peak strength on the fault, respec-
tively.Dc is the critical slip-weakening distance and is related to
the rock property. In numerical simulations, to stabilize the
propagation of the rupture, Dc is often related to the scale of
the fault and the size of the unit (Fukuyama and Mizoguchi,
2010), which affects the rupture speed and the efficiency of
energy radiation (Mikumo and Yagi, 2003; Tinti et al., 2009).
Dc is also an important factor responsible for the transition
to super-shear rupture (Xu et al., 2015). Uniform static and
dynamic friction coefficients of μs � 0:6 and μd � 0:1 are
assumed, which means that the fault has a high peak strength
and a low residual strength. μs, μd , and Dc are distributed
uniformly on the three faults A, B, and C, respectively. We
change the value of Dc to explore its influence on the rupture
propagation and selectivity of the BPs. A reference value of
critical slip-weakening distance is defined as D0 � 0:57 m.

NUMERICAL RESULTS
Rupture pattern on branched faults
For comparison, we consider three different fault models com-
posed by the three fault planes A, B, and C in Figure 1, that is, a
straight fault model with fault planes A and B, a bended fault

model with fault planes A and C, and a branched fault model
with all three fault planes A, B, and C. The final slip distribu-
tions for the three fault models are shown in Figure 2, and
some snapshots are shown in Figures S1 and S2. In all three
fault models, the rupture processes on the main fault plane
A are indistinguishable. For the straight fault model, the rup-
ture propagates continuously from fault A onto fault B (Fig. 2a
and Fig. S1); whereas for the bended fault model, the rupture
seems to pause temporarily at the intersection, and then prop-
agates onto fault C with a different rupture speed and slip pat-
tern (Fig. 2b and Fig. S2). For the branched fault model, when
the rupture reaches the intersection, both faults B and C begin
to rupture. However, the rupture on fault plane B soon ceases,
whereas the rupture on fault C continues to propagate with a
different rupture speed and shape of the rupture front. The
addition of the bifurcated fault C causes the rupture behavior
on fault B to change. The rupture on fault B is suppressed and
the propagation is terminated.
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Figure 1. Model configuration and the slip-weakening friction law.
(a) Configuration of the branched fault system considered in this study.
The fault system consists of three fault planes: the main plane A and the
bifurcated planes B and C. The angle between planes B and C is 15°.
(b) Initial stress field. Black line indicates the branched fault system. τ and
−σn represent shear and compressive normal stresses on the fault planes,
respectively. The thick black arrow shows the direction of the initial maximum
principal stress Smax. (c) Slip-weakening Coulomb friction law. The peak and
residual shear stresses τp and τr are proportional to normal stress −σn.
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Effect of the initial stress field
We use the ratio between the normal stresses to describe the
initial stress field, defined as Fp � �σAxx�=�σAzz�. The value of
Fp determines the angle Φ in Figure 1. We investigate the
influence of the initial stress field on the rupture propagation
with different values of Fp. The initial stress field on planes A
is assumed as σAzz � 10 MPa and τAzx � 5 MPa,, respectively.
We change the value of Fp by changing σAxx only so that the
values of −σn and τ on fault A do not change. This ensures
that the rupture behavior on fault A does not change with Fp,
which means that the rupture speed is always the same when
it propagates to the intersection. Figure 3 shows the snapshots
of slip distributions on the branched faults with different val-
ues of Fp. Because our focus is on the rupture selectivity of the
branched fault, we did not compute the entire rupture proc-
ess, the slip of last step is therefore not exactly the final (static)
slip. It can clearly be seen that fault C is more favorable than
fault B for rupture to continue for Fp ≤ 1:1. After the rupture
reaches the intersection, it almost always propagates onto
fault C only, whereas on fault B the rupture is weak and only
lasts for a very short period of time. On the other hand, fault B
becomes more favorable for Fp > 1:13, when the rupture
propagates almost always onto fault B only, whereas the rup-
ture on fault C is much weaker. Kame et al. (2003) studied the
branched fault and found that the initial stress field changes
the selection of the favorable BP (FBP). In our results, we can

also see that the FBP switches from fault plane C to B as Fp
increases from 1.1 to 1.13. When Fp ∼ 1:13, the rupture
propagates on both fault planes B and C, which is consistent
with the Kame et al. results on the rupture behavior and
selectivity.

Effect of the critical slip-weakening distance
We also investigate how the critical slip-weakening distance
Dc affects the rupture propagation on bifurcation faults.
Figure 4 shows the snapshots of the slip rate with different
Dc in the range of �0:76D0; 1:24D0� and a fixed Fp � 1:1.
The rupture propagates on both BPs as Dc ≤ 0:88D0. In this
case, fault B is more favorable with a larger slip rate but a
smaller rupture speed than fault C. Previous studies
(Fukuyama et al., 2003; Tinti et al., 2004) have shown that
Dc affects the rupture and width of the rupture front. The
overall rupture width is determined by the time delay between
the leading rupture front and the trailing healing front,
whereas Dc mainly affects the rupture behavior (the high
slip-rate part) near the leading rupture front and the fault
thickness could influence of the arrival time of the healing
front. Smaller values of Dc result in larger rupture intensity
and smaller rupture width, which is consistent with our
results. Kame et al. (2003) studied the effect of rupture speed
on the rupture propagation along the branched faults. It has
also been found that when the rupture speed is high, the rup-
ture usually propagates on both BPs. When Dc is in the range
of �0:92D0; 1:04D0�, the rupture still propagates on both BPs,
but fault C is more favorable, and the rupture on fault B
becomes weaker with increasing Dc. For Dc > 1:08D0, the
rupture propagates on both BPs again, with larger energy par-
titioned to fault B and at a higher rupture speed while both
slip and slip rate are smaller on fault C. As Dc increases, the
rupture speed becomes faster and the rupture front grows
wider. For large Dc, the rupture front is thicker, and when
its edge reaches the intersection, initiates a relatively weak
rupture on fault C. On the other hand, the rupture on fault
B is triggered by the main energy of the rupture front, which
accumulates more energy. Meanwhile, the rupture on fault C
has expanded over a certain distance, causing a smaller
restraining effect on fault B, such that the rupture on fault
B is able to propagate with more energy.

Phase diagram for rupture selectivity
Because both the initial stress field and the critical slip-weaken-
ing distance Dc influence the rupture selectivity of the branched
faults, we perform a total of 50 × 50 simulations of the rupture
processes in the parameter space (Dc, Fp), and obtain the rup-
ture phase diagram. Figure 5a shows the FBP for given param-
eters (Dc, Fp), in which the FBP is defined by the ratio of the
maximum slip between faults C and B. It clearly shows that the
FBP is fault B for large Fp but fault C for small Fp. There is a
transition zone of Fp, in which the rupture continues to
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Figure 2. Final slip on the fault planes for fault models (a) with fault planes A
and B, (b) with fault planes A and C, and (c) with fault planes A, B, and C.
The color version of this figure is available only in the electronic edition.
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propagate on both BPs, and the FBP switches between
them. The critical value of Fp is related to Dc. When
Dc ∈ �0:64D0; 1:0D0�, the critical value of Fp increases linearly
with Dc. However, the critical value of Fp decreases linearly with
Dc, for Dc ∈ �1:0D0; 1:3D0�.

Figure 3. Snapshots of accumulated slip distribution on the branched faults
with different values of the normal stress ratio Fp. Yellow lines depict the
intersection. In all cases, Dc � D0. The color version of this figure is
available only in the electronic edition.
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DISCUSSIONS
Initial stress field on BPs
The initial stress field on the BP
can be analyzed by the Mohr’s
circle, as shown in Figure 5c.
Given the initial stress field
Fp, the angle between the maxi-
mum principal stress direction
and the main fault plane A is
determined, and point B corre-
sponds to the stress state on
planes A and B. The stress state
on plane C is represented by
point C on the Mohr’s circle
with the angle between points
B and C being 2φ. The slopes
of the two dotted lines through
the origin correspond to the
dynamic and static friction
coefficients, respectively, and
the rupture is able to propagate
only when the stress status is
located in the area between the
two dotted lines. It can be
inferred from the slip-weaken-
ing criterion that the closer the
stress state is to the static fric-
tion line, the easier it is for the
rupture to propagate, and vice
versa. Andrews (1976) defined
the following parameter to
characterize the propagation
ability of the rupture:

EQ-TARGET;temp:intralink-;df2;433;315S � τp − τ0
τ0 − τr

; �2�

in which τp and τr are the peak
and residual strengths, respec-
tively, and τ0 is the initial shear
stress. The smaller the S-value
is, the easier it is for rupture
propagation. It is obvious that
the vertical distance from a
point on the Mohr’s circle to the
upper dotted line is τp − τ0, and
the vertical distance to the lower
dotted line is τ0 − τr . With the
change of Fp, the angle 2Φ
changes accordingly, and we
can calculate the relative change
of S for points B and C. When
Fp is small,Φ is large, and point

Figure 4. Snapshots of slip-rate distribution for different values of the critical slip-weakening distance Dc. The color
version of this figure is available only in the electronic edition.
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C is closer to the upper dotted line, indicating a smaller S-value
and an easier rupture state on fault C. In contrast, when Fp is
large, Φ is small, and point B is closer to the upper dotted line,
indicating a smaller S-value and an easier rupture state on fault B.
When Fp is near some special value so that the S-values for
points B and C are very close, the rupture can propagate on both
bifurcated faults.

Dc and rupture energy distribution
Figure 5b is a rupture propagation energy distribution diagram
under the slip-weakening law. The fracture energy required for
rupture is proportional to Dc. When Dc is small, the fracture
energy required for rupture propagation is low, and the propa-
gation efficiency of rupture is high. The rupture speed and the
slip rate are also high, which is consistent with the results shown
in Figure 4. For larger rupture speed, Kame et al. (2003) also
found that ruptures are more likely to propagate on both BPs,
which is consistent with our results for small Dc. From the
analysis of Mohr’s circle, it is easy to see that fault C is in an
easier rupture state when Fp � 1. WhenDc is small, the rupture
on fault C propagates fast with a narrow rupture front, accumu-
lating only a little energy. However, fault B accumulates more
energy and ruptures soon after fault C ruptures.

Interaction between BPs
Figure 2 reveals that there is a
mutual inhibition between the
BPs of the branched faults.
The slip on one BP generates
negative stress accumulation
on the other, thereby prevent-
ing the rupture from being
generated, due to the so-
called “stress shadow effect”
(Yamashita and Umeda, 1994).
In BIEM, the stress accumula-
tion is the convolution between
the stress Green’s function and
the slip rate. Figure 6 shows
the comparison of the stress
Green’s functions between dif-
ferent points on different faults.
It is obvious that Kab and Kac
can produce stress accumula-
tion, while Kbc leads to the
stress reduction, which con-
firms the mutual inhibition
between the BPs of the
branched faults.

CONCLUSIONS
We use numerical simulations
based on the BIEM to
investigate the effect of the

initial stress field and the critical slip-weakening distance
Dc on the selection of the FBP during the rupture propagation
process for a 3D branched fault model, and obtained the
phase diagram for the selection of the FBP. An important fea-
ture of the branched faults is the mutual inhibition between
the BPs, such that the rupture propagates on only one of the
BPs in most cases, or on both BPs but one has more dominant
energy than the other. Through the analysis of Mohr’s circle,
we find that the initial stress field determines the rupture
propagation ability parameter S on the BP, which controls
the selection of the FBP. There exists a critical value for
the ratio of normal stresses Fp in the initial stress field.
When Fp is near the critical value, both the BPs rupture,
whereas the rupture propagates only on the FBP when Fp
is away from the critical value. When Fp changes across
the critical value, the FBP switches from one of the BPs to
the other. The phase diagram shows that the value of the criti-
cal Fp is related to the slip-weakening distance Dc. When Dc is
smaller, the rupture speed is larger, and it is easier for the two
fault planes to rupture together, with a more dominant energy
on the bifurcation fault parallel to the main fault. When Dc is
larger, due to the influence of the rupture front width,
although one BP with a smaller S ruptures first, it contains

(b)

(c)

(a)

Figure 5. (a) Phase diagram of the branched fault selectivity. Dc is the critical slip-weakening distance. Fp is the normal
stress ratio of the initial stress field. Colorbar corresponds to the logarithm of the ratio of the maximum slip between
faults B and C. (b) Rupture fracture energy under the slip-weakening friction law.W and A are the fracture energy and
area, respectively. (c) Mohr’s circle. Points B and C on the Mohr’s circle represent the initial stress state of fault B and
C, respectively. Φ is the angle between fault plane B and the direction of the maximum principle stress, and φ is the
angle between faults B and C. The color version of this figure is available only in the electronic edition.
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little energy, whereas the BP with a larger S accumulates
stress for a longer period of time to propagate with greater
energy.

DATA AND RESOURCES
Numerical data used for generating figures and movies in this article are
open at https://opendata.pku.edu.cn/dataverse/zhanghm (last accessed
February 2020). Supplemental material contains more details about the
snapshots of some numerical results.
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