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1. Introduction

Spintronics, also known as magnetoelectronics, has attracted 
widespread attention in science and industry [1–3]. Instead of 
using the charge of electrons, the spin degree freedom of elec-
trons is used for information transfer and storage. For prac-
tical spintronic devices applications at room temperature, it 
is highly desirable to search for ferromagnetic materials with 
large spin polarization ratio, high Curie temperature (TC), and 
large magnetic anisotropy energy (MAE) [4–8]. Moreover, 
for spintronic application at the nanoscale, it is crucial to 
develop low-dimensional ferromagnetic materials that pos-
sess the above properties [9–14] as shown by previous studies 
[15–19].Among them, 2D ferromagnetic sheets have been 

extensively studied for spin Nano devices due to the enhanced 
MAE resulting from the reduced dimensionality [20–22].

Recently a layered conductive magnet CrCl2(pyrazine)2 
has been synthesized by reaction of CrCl2 with pyrazine 
(pyz) [23] where Cr atoms distribute regularly and separately. 
Besides Cr, this synthesis technique is also applicable for 
other transition metal atoms, thus offering a pathway of using 
exfoliation to get magnetic 2D monolayers that can go beyond 
the Mermin–Wagner limit on stable long-range ferromagn-
etic order in monolayers [24], as demonstrated by previous 
theoretical prediction of 2D ferromagnetic monolayers CrX3 
(X  =  Cl, Br, I) [25] which have been confirmed by experi-
ments [26, 27].

In this work, by performing first-principles calculations 
method and Monte Carlo (MC) simulations, we thoroughly 
investigate the electronic structure and magnetic properties of 
2D CrCl2(pyz)2 sheet by focusing on the magnetic coupling 
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Abstract
The ferromagnetism in Cr-based monolayers is of current interest (2019 Nat. Nanotechnol. 
14 408), however, the Curie temperature is low. How can we enhance the thermal stability 
of ferromagnetism? Motivated by the recent synthesis of the layered conductive magnet 
CrCl2(pyrazine)2 (2018 Nat. Chem. 10 1056), we perform first-principles calculations and 
Monte Carlo simulations to demonstrate that the exfoliated 2D CrCl2(pyrazine)2 monolayer is 
stable dynamically and thermally, and it is a ferromagnetic half-metal with a sizeable band gap 
of 2.8 eV in the semiconducting channel, and the strong in-plane Cr–Cr interaction results in 
a large magnetic anisotropy energy. Moreover, the sheet exhibits a high Curie temperature of 
350 K due to the enhanced magnetic exchange interaction resulting from the aromatic property 
of pyrazine. All of these intriguing features endow 2D CrCl2(pyrazine)2 sheet with good 
potentials for applications in nanoscale spintronics devices.
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and magnetic behaviors. Our results show that the CrCl2(pyz)2 
sheet is a stable half-metallic ferromagnetic material with 
100% spin polarization at Fermi level, and exhibits a large 
MAE and a high TC, which make it an ideal candidate material 
for spin-filtering.

2. Computational methods

Calculations are based on spin-polarized density functional 
theory (DFT) using the generalized gradient approximation 
(GGA) presented by Perdew–Burke–Ernzerhof (PBE) [28]. 
The projected augmented wave (PAW) method with a plane-
wave basis set is used as implemented in the Vienna ab initio 
simulation package (VASP) [29, 30], and the cutoff kinetic 
energy is set to be 600 eV. We use the GGA+U method [31] 
with Ueff  =  4 eV for the 3d orbital of Cr atoms that has been 
tested and compared with experiments [32, 33]. We use peri-
odic boundary condition with a large vacuum slab of 20 Å 
along the c-direction to prevent the influence of the adjacent-
layer interactions. Based on the convergence test, 9  ×  9  ×  1 
Monkhorst–Pack [34] k-point mesh is adopted to represent 
the reciprocal space of the unit cell. The structures are fully 
relaxed without any symmetric constraints, and the energy and 
force convergence criteria are set to be 10−6 eV and 0.01 eV 
Å−1, respectively.

To check the dynamic stability, perturbation theory is used 
to calculate the lattice vibrational properties by optimizing the 
structures with a higher convergence criterion of 10−8 eV for 
total energy and 10−6 eV Å−1 for force. Based on the dynam-
ical matrix calculated by VASP, we use Phonopy code to cal-
culate force constants and obtain the phonon band dispersions 
by solving the dynamical equations [35].

To ensure accurate electronic properties, we use HSE06 
hybrid functional with 25% of the GGA exchange being 
replaced by exact Hartree–Fock exchange, and the exchange 
interaction being screened with a range separation parameter 
of 0.2 Å–1, which can provide more accurate results of the 
band structure as widely accepted.

3. Results and discussion

Monolayer CrCl2(pyz)2 exhibits a symmetry of tetragonal 
P4/NBM space group with a unit cell of a  =  b  =  9.868 Å, 
α  =  β  =  γ  =  90°, Cr–Cr distances of 6.977 Å and Cr–N bond 
lengths of 2.059 Å, as shown in figure 1, where the pyrazine 
rings are raked about the N–N axes with a uniform orientation 
at an angle of 36.5° to the planes of the Cr atoms, that is in 
agreement with the results reported by previous experimental 
and theoretical works [23].

The most possible way to obtain the 2D monolayer is to 
exfoliate it from layered structure. The calculated exfoliation 
energy is 12 meV Å−2, which is smaller than the value of 21 
meV Å−2 for graphene [36], suggesting that 2D monolayer 
CrCl2(pyz)2 can be cleaved easily from the layered bulk phase.

To verify the dynamic stability, we calculate the phonon 
spectra which is shown in figure 1(c). There are no imaginary 
frequencies occur in the whole Brillouin zone. We also carry 

out ab initio molecular dynamics simulation at 500 K with a 
supercell, which shows slight changes in structure after heating 
for 5 ps. The simulated results are plotted in figure 1(d), where 
the potential energy only slightly fluctuates around the equi-
librium value during the simulation, suggesting the thermal 
stability of CrCl2(pyz)2 sheet at room temperature.

To identify the stable magnetic state, spin-polarized calcul-
ations for ferromagnetic (FM) and antiferromagnetic (AFM) 
state are performed as illustrated in figures 2(a) and (b). In FM 
state, the main spin polarization comes from Cr atoms that 
are antiferromagnetically coupled with the adjacent N atoms 
(Cr ~ 3 µB, N ~  −0.25 µB) while other C, H, and Cl atoms are 
barely spin-polarized. In AFM state, the magnetic moments 
of adjacent Cr atoms are coupled oppositely. The exchange 
energy Eex (=EAF  −  EFM) per unit cell is  +220 meV, indi-
cating that it is energetically more favorable for Cr atoms 
to ferromagn etically couple with each other in CrCl2(pyz)2 
sheet, resulting in a total magnetic moment of 4 µB in each 
unit cell. In order to study the effect of Ueff value on mag-
netism, we calculated the energy of the system with different 
values (0–6 eV). As plotted in figure 2(c), we can see that FM 
state is always stable than AFM state for all the Ueff values 
adopted in our calculations.

The band structure and density of state (DOS) of 2D 
CrCl2(pyz)2 calculated with HSE06 hybrid functional are 
shown in figure  2(d), where the spin-up channel exhibits 
semiconducting property with a band gap of 2.8 eV while the 
spin-down electrons show metallic behavior which is mainly 
contributed by the p bands of the pyrazine ligand. According 
to the definition of spin polarizability: δ  =  |ρ↑  −  ρ  ↓  |/
(ρ↑  +  ρ↓), here ρ↑ and ρ  ↓  represent the density of spin-up 
and spin-down at the Fermi level, respectively, the CrCl2(pyz)2 
sheet is a half-metal with 100% spin polarization ratio in the 
Fermi level and the half-metallic gap is 0.5 eV. Due to the 
half-metallic nature of the system, the spin-up electrons and 
the spin-down electrons are asymmetrically distributed, thus 
leading to magnetism. In addition, the coupling of p-d orbitals 
provides effective interaction between the Cr atoms and the 
pyrazine ligand, which results in a large exchange energy.

In order to analyze the magnetic properties of this system, 
we calculate the partial DOS of the d electrons of Cr atoms. 
As we know that in a stretched octahedral environment, the d 
orbitals are split into non-degenerate orbitals (dz2, dxy, dx2_y2) 
and a doubly degenerate orbital (dxz and dyz). From the calcul-
ation results, we find that three spin-up dxz, dyz, and dx2−y2 
orbitals of are occupied while all other orbitals are empty, thus 
giving rise to a magnetic moment of 3 µB per Cr atom.

Besides the magnetic moment, MAE is another important 
parameter for magnetic materials that is directly related to 
the information storage density. In current devices, one bit of 
information is stored in a few hundred single-domain parti-
cles or grains, which can be reduced when using materials 
with large MAE [16, 37]. Because reducing the dimensions 
and symmetry would result in a large MAE, we then can 
expect a large MAE in CrCl2(pyz)2 sheet, which is defined 
as MAE  =  E‖  −  E⊥, where E‖ and E⊥are energies when the 
magnetic axis is parallel or perpendicular to the 2D frame-
work, respectively. The calculated MAE is 398 µeV per Cr 
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Figure 1. (a) Top view of the CrCl2(pyz)2 structure, (b) a fragment of the unit cell showing the rotation of the pyrazine rings. (c) Phonon 
spectra and (d) energy fluctuation during AIMD simulation at 500 K.

Figure 2. Spin density for (a) FM and (b) AFM 2D CrCl2(pyz)2 at an isosurface value of 0.012 e Å−3. (c) Energy changes of FM and AFM 
states along with Ueff. (d) Band structure and (e) partial DOS of the d band of the Cr atom.
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atom, which are about two orders larger than those of cubic 
Fe (1.4 µeV per atom), and Ni (2.7 µeV per atom) [38], such 
large MAE is rarely found in other low-dimensional materials 
[39–41], indicating the promising applications of CrCl2(pyz)2 
sheet for magnetic memory devices.

For practical spintronic applications, the FM state needs 
to be stable over a wide temperature range. To this end, we 
next study how magnetism changes with temperature by 
using Ising model, in which the Hamiltonian can be written 
as H = −

∑
i,jJmi · mj , where J is the exchange parameter and 

mi  and mj  are the sites i and site j  magnetic moments. Here, 
we treat each chemical formula CrCl2(pyz)2 as one unit car-
rying magnetic moments with the possible values of  +2, 0, −2 
µB. J can be obtained by calculating the exchange energy Eex 
defined as:Eex = EAFM − EFM = 4Jm2 − (−4)Jm2, where 
m is magnetic moment, and the factor 4 presents four magn-
etic interactions in the unit cell. Therefore, we calculate the 
exchange parameter J, which is found to be 4.23 meV. Based 
on these results, we can estimate the Currie temper ature by 
using mean-field theory (MFT), in which the partition func-
tion is in the following form

Z =
∑

m=2,0−2

e−βγJm〈m〉.

Here γ  =  4 is the coordinating number. Then the average 
magnetic moment in CrCl2(pyz)2 sheet can be calculated as

〈m〉 = 1
β

∂

∂B
ln Z.

Let P = 2βγJ , the equation above can be rewritten as

〈m〉 = 2eP〈m〉 − 2e−P〈m〉

eP〈m〉 + e−P〈m〉 + 1

the Currie temperature TC for phase transition from ferromagn-
etic to paramagnetic states is estimated as ~479 K. To more 
accurately calculate TC, we next perform MC simulations by 
using a (80  ×  80) supercell and 5  ×  105 loops. The spin states 
of each site of the system updated according to the spins of 
nearby atoms in each loop. Hence, totally 3.2  ×  109 trials are 
carried out in the simulations. The MC simulation results are 

shown in figure 3. We have also checked a larger supercell and 
longer loops, while the results are almost unchanged. We can 
see that the paramagnetic state appears at the temperature of 
~350 K for 2D CrCl2(pyz)2, indicating the TC value is above 
room temperature. Especially, it is interesting to note that the 
Tc of CrCl2(pyz)2 sheet is much higher than that of CrCl3 
sheet, the underlying reason is following: different from CrCl3 
sheet, the magnetic coupling between Cr ions in CrCl2(pyz)2 
sheet is mediated by pyrazine that is aromatic with delocalized 
electrons. In fact, ferromagn etic spin coupling mediated by 
π-conjugated ligand was confirmed in high-spin molecules in 
1995 [42], and this kind mechanism has also been confirmed 
in K3Fe2[PcFe–O8] MOF monolayer recently [43], where mag-
netization experiments and Fe Mössbauer spectr oscopy dem-
onstrate the presence of long-range magnetic correlations in 
K3Fe2[PcFe–O8] arising from the magnetic coupling between 
iron centers via delocalized π electrons.

4. Conclusions

In summary, motivated by the recent experimental prog-
ress, we systematically investigate the electronic structure 
and magnetism of 2D CrCl2(pyz)2 monolayer. The results 
of the calculation lead to the following conclusions: (1) The 
CrCl2(pyz)2 monolayer is a half-metallic ferromagnet with 
100% spin polarization and sizeable band gap of 2.8 eV; (2) 
Cr ions are ferromagnetically coupled with a total magnetic 
moment of 4 µB in one unit cell; (3) the easy axis of mag-
netization is along the normal direction of the sheet with a 
large MAE; (4) the ferromagnetism displayed in CrCl2(pyz)2 
sheet shows high thermal stability with a Currie temperature 
of 350 K, which is much higher than that of CrCl3 sheet. These 
intriguing features make CrCl2(pyz)2 sheet very promising for 
applications. We hope our theoretical research will promote 
further experimental effort on this subject.
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