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Polythioesters are promising candidates as sustainable polymers, but their
controlled and selective (de)polymerization remains a significant challenge. In the
current study, we addressed this problem by designing a thermodynamically
neutral and kinetically trapped system based on penecillamine-derived
B-thiolactones, opening the possibility of establishing a circular economy for
plastic materials.
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SUMMARY

To access infinitely recyclable plastics, one appealing approach is to
design thermodynamically neutral systems based on dynamic cova-
lent bond, the (de)polymerization of which can be easily manipu-
lated with low energy cost. Here, we demonstrate the feasibility
of this concept via the efficient synthesis of polythioesters PNR-
PenTE from penicillamine-derived B-thiolactones and their conve-
nient depolymerization under mild conditions. The gem-dimethyl
group adjusts the thermodynamics of (de)polymerization to near
equilibrium, confers better (de)polymerization control by reducing
the activity and conformational possibilities of the chain-end thio-
late groups, and stabilizes the thioester linkages in the polymer
backbone. PNR-PenTE with tailored properties is conveniently
accessible by altering the side chains. PNR-PenTE can be recycled
to pristine enantiopure B-thiolactones at >95% conversion from
minutes to a few hours at room temperature. This work highlights
the power of judicious molecular design and could greatly facilitate
the development of a wide range of recyclable polymers with
immense application potentials.

INTRODUCTION

The annual global production of plastics has increased more than 20-fold since 1964,
reaching 348 million metric tons in 2017." The rapid accumulation of petroleum-
based plastic wastes has created one of the greatest environmental crises in the
world.” Single-use plastics have been banned in Europe, while other countries
(e.g., China) are expected to enact similar regulations in the near future. In conjunc-
tion to developing methodologies for the degradation of existing plastics,”° the
need for infinitely recyclable new plastics from renewable feedstock has received
vast global attention.®”'? As previously suggested by Endo, Albertsson, and others,
one of the many appealing strategies is to design thermodynamically near-equilib-
rium systems for easy manipulation of the polymerization and reverse depolymeriza-
tion."*”"” Along this direction, many biomass and CO, derived synthetic polymers,
mainly polyesters and polycarbonates, have shown their capability of establishing a
circular economy of monomer-polymer-monomer.'®** Despite the advancement,
the development of recyclable polymers under mild condition and at low energy
cost have been limited. Some of the thermodynamically neutral systems may suffer
from low selectivity in monomer recovery as a result of the generation of oligomeric
mixtures, thus necessitating extra work to push the equilibrium towards monomer
formation. Kinetically trapped polymers such as poly(y-butyrolactone) can be
completely recycled, elegantly demonstrated by Chen et al., but the polymerization
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The Bigger Picture
Chemically recyclable polymers
from renewable feedstock hold
great promise for solving the
imminent global plastic-waste
crisis. Despite recent advances,
challenges including high energy
consumption, the limited choices
of sustainable polymers, and side
reactions that could hamper
complete monomer recovery are
still yet to be addressed. By
introducing a gem-dimethyl
substitution, we succeeded in
regulating both the forward
polymerization of B-thiolactones
and the backward
depolymerization of
polythioesters in a highly
controlled fashion and with low
energy input. Moreover, our
strategy allows facile access to
semicrystalline plastics with
tailorable mechanical and thermal
properties from biorenewable
penicillamine feedstock. We
envision that our design principle
can facilitate the development of
a new generation of chemically
recyclable polythioester-based
polymers, providing a sustainable
solution to the ongoing
environmental and economic
challenge caused by
nondegradable plastics.
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of the non-strained y-butyrolactone requires very low temperatures (—30°C to
—60°C) because of unfavorable thermodynamics (AGp® = + 6.4 kJ/mol). Moreover,
both the polymerization and depolymerization need strong catalysts and
demanding conditions because of the relatively high energy barrier for ester activa-
tion."”" Thus, introducing more dynamic bonds to thermodynamically near-equi-
librium system could be a viable but underdeveloped approach to design sustain-
able polymers.

Polythioesters (PTE) are one such intriguing example because of the dynamic
thioester bonds in their backbones, which are more reactive than their oxoester an-
alogues.*~*’ However, PTEs are significantly less explored than polyesters due to a
lack of controlled ring-opening polymerization (ROP) methods that convert thiolac-
tones to high-molar-mass (M,) polymers with narrow dispersity (D). A few recent ad-
vances by the Bowman,®” Lu,*® and Gutekunst®? groups achieved modest-to-good
control of PTEs, but the recycling of the polymers were not investigated. The use of
amino acid as the feedstock is a smart approach to access chiral and semicrystalline
polymers. We have recently reported the controlled synthesis of PTEs from 4-hy-
droxyproline-derived thiolactone (ProTL) monomers and demonstrated that the
polymers can be conveniently depolymerized.*® Nevertheless, these polymers are
found to be brittle due to their prolyl backbone with relatively restricted conforma-
tions, necessitating further optimization of appropriate side chain and new
backbone design.*’

An interesting study by Suzuki and coworkers reported the synthesis of PTEs from a
cysteine-derived B-thiolactone (CysPTE).>® Unfortunately, the resulting polymers are
characterized by relatively low molar mass (typical M,, < 10 kg/mol), broad dispersity
(B ~ 1.6-2.4), and mixed linear and cyclic topologies. The underlying challenges
include undesirable chain transfer, reshuffling, and backbiting, all or at least partially
attributable to the extensive transthioesterification side reactions. CysPTEs are also
difficult to depolymerize for monomer recycling owing to the highly strained 4-
membered B-thiolactone ring. One classical strategy of accelerating ring closure
and stabilizing strained rings in physical organic chemistry is the gem-disubstituent
effect, so called Thorpe-Ingold effect.”'->? We thus hypothesize that the introduction
of a geminal dimethyl (gem-DM) group on the four-membered ring could tune the
thermodynamics to near equilibrium for improved propensity of depolymerization,
and in the meantime mitigate the reactivity of both the chain ends and PTE back-
bone for reduced transthioesterification (Scheme 1). Notably, such monomers can
be easily produced and tailored with various side chains starting from a naturally

occurring amino acid, D-penicillamine.*->*

RESULTS

Controlled Polymerization

We first synthesized five penicillamine-derived B-thiolactone monomers (NR-PenTL)
with different side-chains (Scheme 1B), including N*°-PenTL and NB°°-PenTL as
white crystals, as well as N8_PenTL, N®"®-PenTL, and NF®*-PenTL as colorless
oils ("H and "3C NMR, high-resolution mass spectrometry, and X-ray diffraction
in Figures S1-516). Notably, the monomer synthesis is a simple and robust one-
pot process and can be easily scaled up to ten-gram scale per batch in the labora-
tory. The ROP of each substrate was then initiated by benzyl mercaptan and cata-
lyzed by an organobase of suitable basicity (Scheme 1B). No ROP of N*“-PenTL or
NB°.PenTL was observed (Table 1, entries 1 and 2), most likely because of their
limited solubility (less than ~90 mg/mL in tetrahydrofuran [THF]), which is lower
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Scheme 1. Synthesis and Ring-Opening Polymerization of Various N°"¢-PenTL

than the equilibrium monomer concentration. We therefore focused our effort on the
ROP of the three liquid monomers because they were substantially more soluble in
common organic solvents or could be even executed for bulk polymerization. We
measured the [M]eq of N°"®-PenTL at various temperatures to draw the Van't Hoff
plot (Figure S17). According to the linear regression, the enthalpy (AHp°) and en-
tropy (ASp°) changes of the ROP were calculated to be —9.4 kJ mol™" and —28.1 J
mol™" K77, respectively. This, in turn, gave a AGp°® of —1.0 kJ mol™" (=0.24 kcal
mol~") at 25°C and a ceiling temperature (T) of 61°C at an initial monomer concen-
tration ([M]o) of 1.0 M.

To increase reaction efficiency, we conducted bulk polymerization of N°"-PenTL
and N8-PenTL at room temperature and a feeding monomer/initiator ratio (M/I)
of 100/1. To our gratification, the ROP of N°"®-PenTL, catalyzed by a weak organo-
base, triethylamine (TEA, pKaDMSO = 9.0),>" afforded the desired polymer product
PNe"®-PenTE ("H NMR in Figure S18) with a considerably larger M, and narrower dis-
persity (entry 3, Table 1; M,, = 19.4 kg/mol, D ~ 1.10) than those of similar PTEs syn-
thesized previously from CysTLs (M, ~8.8 kg/mol, B ~ 2.4) at the same M/I ratio.”°
Replacing TEA (1.0 equiv relative to initiator) with 1,8-diazabicyclo(5.4.0)undec-7-
ene (DBU, 0.1 equiv), a stronger base with a pKaDMSO of 12,%° greatly accelerated
the ROP reaction (Table 1, entries 4-7; Figure 1A) while preserving the controlla-
bility, as evidenced by the unimodal peaks in size-exclusion chromatography
(SEC) analysis. Increasing the M/I ratio resulted in a corresponding linear elevation
in the M,, of PN®"®-PenTE (Figure 1A). The DBU-catalyzed ROP of N°"-PenTL also
demonstrated other typical features of controlled polymerization, such as the obser-
vation that the monomer conversion displayed a linear relationship with M, (Fig-
ure 1B). The ROP of N“®-PenTL showed very similar controllability to that of N°"®-
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Table 1. Ring-Opening Polymerization of NR-PenTL

Entry Monomer Base [M]o/[1lo/[Base]o Time (h) M, (g mol~")? M, (g mol~")° B° Conv.?
1 NA-PenTL TEA 50/1/1 24 8,700 = = 0

2 NEBec_penTL TEA 50/1/1 24 11,600 = = 0

3 Ne"e-PenTL TEA 100/1/1 72 34,700 19,400 1.10 61%
4 Ne"® -PenTL DBU 30/1/0.1 1 10,400 6,400 1.1 58%

5 Ne"® -PenTL DBU 50/1/0.1 3 17,400 9,900 1.09 60%

6 Ne"® -PenTL DBU 75/1/0.1 45 26,000 13,700 1.15 61%

7 Ne"® -PenTL DBU 100/1/0.1 6 34,700 18,500 1.14 59%

8 NCE.PenTL DBU 100/1/1 0.3 28,700 20,100 1.21 70%
9 NCE_PenTL tBuP4 250/1/1 20 71,800 52,400 1.26 69%
10 NCE_PenTL tBuP4 350/1/1 24 100,500 70,600 1.23 70%

11 NEBec _PenTL, N“E-PenTL DBU 30/70/0.5/1 1 27,000 14,100 1.24 42%, 56%
12 NES4_penTL DBU 50/1/1 6 18,300 13,900 1.30 57%

Polymerizations were initiated with benzyl mercaptan in a glovebox at room temperature. All entries were performed as bulk polymerizations except for entries 1
and 2, which were conducted in THF.

M, = calculated number-average molar mass based on the feeding M/I ratio.

EM,°Pt = obtained number-average molar mass determined by SEC in DMF with 0.1 M LiBr.

D = dispersity.

9Monomer conversion, determined by "H NMR spectroscopy.

PenTL(Table 1, entries 8-10). For example, DBU-catalyzed formation of PN®8-PenTE
("HNMR in Figure $19) ata M/l ratio of 100/1 exhibited a M,, of 20.1 kg/mol and P of
1.21 (Table 1, entry 8). Employing tBuP4, a phosphazene superbase with a pK,”M*°
of 30.3,° further boosted the M, to 52.4 and 70.6 kg/mol at a M/I ratio of 250/1
and 350/1, respectively, while maintaining a D less than 1.30 (Table 1, entries 9
and 10). Copolymerization of N“%-PenTL and N®°¢-PenTL mixture gave a random
copolymer with a M, of 14.1 kg/mol and a D ~1.24 (Table 1, entry 11). The ROP
of NE®4_PenTL, a monomer containing an oligoethyleneglycol side chain, afforded
a PEG-like polymer PNE®*-PenTE ('"H NMR in Figure S20) also with satisfactory con-
trol (Table 1, entry 12). Notably, all polymerizations became viscuous immediately
after the addition of base and gelized eventually as a result of the high concentra-
tion. It is also noteworthy that the polymerizations needed to be carefully quenched
before subsequent processing because of the reversibility.

Facile Functionalization

Next, we examined the chain-end group of the resulting PN®"¢-PenTE and its ability
to undergo post-polymerization modification. Matrix-assisted laser desorption
ionization-time of flight (MALDI-TOF) mass spectrum of benzyl mercaptan-initiated
PN®"®-PenTE s contained only one set of molecular ion peaks with a spacing of
347 Da between two adjacent peaks, which corresponded to the molar mass of
the monomer (Figure 1C). Moreover, the end groups were unambiguously assigned
to the initiating PACH,S—group on the o end and free tertiary thiol on the w terminus
(Figure 1C, plus Na* or K¥). When the ROP was quenched with a small molecular
capping agent, such as iodoacetamide, MALDI-TOF analysis gave exclusively
PN®"®-PenTE bearing PhCH,S—and -CH,CONH; as the o and w end groups, respec-
tively (Figure S21). Similarly, PN“8-PenTE also gave well-defined chain end groups
in the MALDI-TOF analysis (Figures S22 and S23). Moreover, PN®"®-PenTE (v end
capped) was found to withstand typical UV-triggered thiol-ene reactions, and the
side chain alkenes were converted to long alkyls (Figure S24) or anionic sulfate
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Figure 1. Bulk ROP of Benzyl-Mercaptan-Mediated and DBU-Catalyzed N°"°-PenTL

(A) Plots of M, and B as a function of the [M]o/[l] ratio. Inset: overlay of SEC curves at different [M]o/[l] ratios.
(B) Plots of M,, and D as a function of monomer conversion at the [M]o/[l] ratio of 100/1. Inset: overlay of SEC curves at different monomer conversions.

(C) MALDI-TOF mass spectrum of benzyl-mercaptan-initiated PN®"°-PenTE;s.

(Figure S25) groups almost quantitatively. Together, these results indicate that not
only the chain ends but also the side chain groups are easily tunable, allowing facile
introduction of a variety of functionalities.

Thermal and Mechanical Properties

Next, we studied the thermal properties of PN8_PenTE (M, ~70.6 kg/mol) via
thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC).
PN®8-PenTE showed a 5%-weight-loss decomposition temperature (Ty) of ~192°C
regardless of the capping status at the w end (Figure S27). DSC depicted a weak
glass transition at ~50°C (Tg), and a large endotherm peaked at ~100°C, which cor-
responds to crystal melting in the heating scan (Figure 2A). Upon cooling, an
exothermic peak was observed at a temperature slightly lower than the melting tem-
perature (T,,). Dilatometry testing suggested that the Tg and T, of the same polymer
were ~45°C and ~100°C (Figure S28), respectively, which agreed well with the DSC
results. In the tensile test using dynamic mechanical analysis (DMA), PN“-PenTE
showed a Young’s modulus of 300 MPa at 30°C and a catastrophic facture before
yielding with a strain of 2.8% (Figure 2B). Above Tg, the Young’'s modulus reduced
to 110 Mpa, and on the other hand, the breaking strain increased to 170% at 60°C
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Figure 2. Thermal and Mechanical Properties of PN“®-PenTE Materials

(A) DSC curve of PN“®-PenTE.

(B) Stress-strain curves of PN“8-PenTE test by DMA using a constant force rate of 0.5 N/min at 30°C
(red) or 60°C (blue).

(C and D) Photographs of PN“8-PenTE as a transparent film (C) and fibers (D) obtained by hot
compression and melting drawing at 140°C, respectively.

(Figure 2B). PN®®-PenTE can be manufactured into a transparent film by hot
compression or flexible fibers by melt drawing at 140°C with no detectable decom-
position (Figures 2C and 2D).

Controlled and Complete Depolymerization

To investigate the depolymerization of the w-end-uncapped PN“8-PenTE, we tested
all reactions in diluted CDCl; (initial polymer concentration = 5.0 mg/mL) by em-
ploying various bases and temperatures. When PN“®-PenTE was mixed with 0.05
equiv DBU (relative to the number of polymer chains) at 65°C, the gradual regener-
ation of N“®-PenTL was confirmed by "H NMR spectroscopy and SEC. The conver-
sion of depolymerization exhibited an inverse linear relationship with the remaining
M, of the polymer (Figure 3B). Moreover, only unimodal peaks were observed in the
SEC analysis of the depolymerization of PN“®-PenTE, implying that no oligomeriza-
tion occurred (Figure 3C). Meanwhile, as shown in Figure 529, the DBU (0.5 equiv)-
mediated depolymerization of PN“®-PenTE (degree of polymerization ~ 40) at room
temperature gave a linear correlation of the conversion as a function of time (zero
order kinetics). All these data offer convincing evidence for a domino-like unzipping
depolymerization process. However, [a]p testing of the 65°C recycled monomer
indicated racemization (Table 2, entries 1 and 2). Interestingly, at reduced temper-
atures such as 25°C, PN-PenTE,o was completely depolymerized (>95%) into
enantiopure monomers (Figure 3D; Table 2, entry 3) within 4 h, catalyzed by 0.1
equiv DBU. Thus, it appears that lower temperature could prevent racemization
effectively. This notion was further confirmed by the fact that complete depolymer-
ization without racemization of PN“8-PenTE,o was achievable within 10 min with 1
equiv DBU at —25°C (Table 2, entry 4). PN°"°-PenTE showed a very similar result
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Figure 3. DBU-Catalyzed Depolymerization of PN®-PenTE

(A) Scheme of PN“®-PenTE depolymerization.

(B) Overlay of SEC curves at different depolymerization conversions.

(C) Plot of the remaining M,, of PN“®-PenTE as a function of the conversion of the depolymerization.
(D) Overlay of the "H NMR spectra in CDCl; of PN“®-PenTEyq (top), recycled N C8_PenTL after
depolymerization (middle), and the started N©8-PenTL as a reference (bottom).

to PN“®-PenTE in depolymerization (Table 2, entries 5 and 6; Figure S30). Of note,
the w-end-capped PN®"®-PenTE remained almost unchanged when mixed with 0.1
equiv DBU at 25°C for 12 h (Figure S31). The depolymerization could also be cata-
lyzed by 1.0 equiv sodium thiophenolate (PhSNa), a weaker base but stronger nucle-
ophile than DBU, which gave >95% conversion in less than 2 h at ambient temper-
ature, again with no detectable racemization (Table 2, entry 5). More interestingly,
even the w-end-capped PN“®-PenTE could be completely depolymerized when
treated with 1.0 equiv PhSNa at room temperature (Figure S32), implying a comple-
mentary (mechanistic) approach to the previously described DBU-catalyzed depoly-
merization (Figure S33).
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Table 2. Depolymerization of PN®-PenTE in Dilute Solution

Entry Monomer or Catalyst Equivalents® Time Temperature [a]p'72"
Polymer (min) (°C)

1 N8-PenTL = = = = -35.8

2 PNC8-PenTE DBU 0.05 1 65 0

3 PN<8-PenTE DBU 0.1 240 25 -34.2

4 PNCE-PenTE DBU 1 10 —-25 -35.8

5 PNC8-PenTE PhSNa 1 120 25 -35.6

6 Nee-PenTL = = = = —37.4

7 PNe"_PenTE DBU 0.1 240 25 —-36.6

All entries were conducted in THF at a concentration of 5.0 mg/mL.
®Relative to the number of polymer chains.
BSpecific optical rotation, determined by polarimeter in THF at 17.2°C.

Mechanism of ROP and Depolymerization

We further studied the ROP and depolymerization of N*-PenTL by density functional
theory (DFT) calculation and molecular dynamics (MD) simulation. To simplify the
calculation, we used N*°-PenTL as a model monomer and considered the reactive
chain end to consist of a dissociated anionic thiolate. The free energies of key inter-
mediates (INTs) and transition states (TSs) in both the chain propagation and chain
transfer are summarized in Figure 4A. The change in free energy of the ROP was
calculated to be 0.8 kcal/mol (INT; to INT,), agreeing well with the previous Van't
Hoff plot (—0.24 kcal/mol). The energy barrier for the chain propagation (INT; to
TS1) and chain transfer (INT; to 2TS4) was 6.6 and 19.2 kcal/mol, respectively
(Figure 4B). The ~12.6 kcal/mol difference in energy barrier, according to the Eyring
equation, suggested that the rate constants of the two pathways differed from each
other by an order of magnitude of ~6, which ensured that the ROP would proceed in
a highly controlled fashion as we observed. Interestingly, the energy barrier of chain
propagation and chain transfer in the ROP of N*°-CysTE were substantially lower,
0.5 and 2.2 kcal/mol, respectively (Figure S34). Such low energy barriers suggest
that the rate of both propagation and transfer reactions was fast and that it was
difficult to minimize chain transfer.

For depolymerization of PN°-PenTE, the energy barrier was 5.8 kcal/mol (INT, to
TSq; Figure 4B), which served as a key contributor to the amenability of PNR-
PenTE to depolymerization. On the other hand, for N*“-CysTE, the change in
free energy was favored for the ROP (-14.4 kcal/mol), making the reverse depo-
lymerization pathway highly unfavorable thermodynamically (C-INT, to C-TSy;
Figure S34). DFT calculation further suggested that in the low-energy conforma-
tion of PNR-PenTE, the terminal tertiary thiolate and the adjacent thioester took
a gauche conformation with a S—-C=0 distance of ~2.96 A and a S-C-C-CO dihe-
dral angle (W) of 66.4° (Figure 4C), which required no extra rotary energy for the
ring-closing depolymerization. On the contrary, the low-energy conformation of
NA°-CysTE was the staggered conformation in which the same S—C=0 distance
was ~4.17 A (Figure 4C). All-atom MD simulation (Figures 4D ansd 4E) of the
20-mer of PNM-PenTE also suggested that the most populated conformation
(W = 67.7%) is characterized by an average 5-C=0 distance of 3.4 A between
the terminal thiol and its adjacent thioester carbon, whereas the staggered confor-
mations with a longer distance (4.20 Ain average) were less populated (18.2%).
This restrained conformation is a clear indication of the Thorpe-Ingold effect
induced by the gem-DM.>">?
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Figure 4. Mechanistic Investigation of the ROP and Chain Transfer by DFT Calculation and MD
Simulation

(A) Proposed chain propagation and transfer intermediates (INTs) and transition states (TSs) in the
ROP of NR-PenTL in gas.

(B) Calculated free energy of each INT and TS.

(C) Low-energy conformation of N*-PenTE and N*°-CysTE.

(D) The most popular conformation of PNMe-PenTE .

(E) W dihedral angle distribution of different conformations of PNMe-PenTE .

DISCUSSION

The unique thermomechanical, optical, and dynamic properties of PTE polymers,
coupled with a global emphasis on environmental sustainability, have propelled a
resurgence in their popularity.*>***” Although chemical production®’” and biosyn-
thesis®® of PTEs were first reported in 1968 and 2001, respectively, controlled chem-
ical synthesis of high M, PTEs remains a technological bottleneck because of the dy-
namic nature of thioesters. In this work, we achieved the controlled ROP
of B-thiolactones by introducing a gem-DM group on the four-membered ring
(Figure 1; Table 1). The facile access to high M, PTEs under mild conditions could
provide a significant boost to their industrial and biomedical application.
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Functionalization of both the termini and side groups in PN®-PenTE opens up oppor-
tunities to create novel, high-performance materials by introducing different combi-
nations of substituents to the polymer chain. As demonstrated earlier, the N-octa-
noyloxy groups in PN“8-PenTL confer semicrystallinity and increase processability
and durability (Figure 2). On the other hand, PNEC4.PenTE (Table 1, entry 12) ex-
hibits excellent water solubility and degradability, making it an attractive alternative
to PEG and a promising high-value biomaterial for temperature-induced self-assem-
bly and/or therapeutic protein conjugation.””“° The physicochemical properties of
PNR-PenTE could be further expanded or fine-tuned by copolymerizing several
types of monomers with different side chains (Table 1, entry 11).

Previously reported strategies for polymer recycling predominantly involved revert-
ing back to cyclic monomers bearing a five- or six-membered ring, which are rela-
tively unstrained.'’-'??%31:¢7 We recently succeeded in extending the scope of
such regenerative building blocks to bridged bicyclic thiolactones.*® In the current
study, we further demonstrated, on the basis of both experimental data and theoret-
ical calculations, that the presence of gem-DM played a key role in enabling fast, se-
lective, and highly controlled depolymerization of PNR-PenTEs (Figures 3 and 4). Of
note, although depolymerizable polymers were not uncommon, the domino-like un-
Zipping fashion in the depolymerization of PN®-PenTEs without the generation of
thermodynamic equilibrium mixture of oligomeric intermediates (Figures 3A, 3B,
and S29) was relatively rare. This control was again most likely empowered by the
presence of gem-DM (Figures 4C-4E). It is also worth pointing out that similar
ring-closure reactions that are driven by the Thorpe-Ingold effect have been
frequently employed.®?** Thus, we envisage that our current strategy can be
broadly applied to the design of various recyclable polymers beyond PNR-PenTEs.
The PhSNa-mediated complete depolymerization of both w-end-capped and -un-
capped PNR-PenTEs allows more versatile end-group functionalization without
jeopardizing the recycling capability of PTEs and thus opens new opportunities to
a broader scope of applications.

It should be noted that the relatively high price of penicillamine could pose a chal-
lenge to our method when applied on an industrial scale. Nevertheless, cost mitiga-
tion could potentially be achieved by further optimizing the chemical and/or biosyn-
thetic-based routes to produce similar substrate monomers in a more affordable
manner.®> Overall, the strategy can be utilized to rapidly and efficiently generate
a wide range of high-value, recyclable polymers with immense application potential

66,67

as self-immolative materials, covalent adaptable networks,® sacrificial domain

for composites and nanolithography, and responsive biomaterials.”®

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Requests for further information should be directed to and will be fulfilled by the
Lead Contact, Hua Lu (chemhualu@pku.edu.cn).

Materials Availability
This study did not generate new unique materials.

Data and Code Availability

The accession number for the crystallographic data reported in this paper is CCDC:
2004873. These data can be obtained free of charge from the Cambridge Crystallo-
graphic Data Centre at https://www.ccdc.cam.ac.uk/structures/.
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The Cartesian coordinates of structures can be found in Data S1.

General Procedure for the Ring-Opening Polymerization of N?-PenTL

In a glovebox, benzyl mercaptan (2.0 M, 29.5 pL, 1.0 equiv) and DBU (2.0 M, 3.0 uL,
0.10 equiv) in THF were added to NE_PenTL (1,740 mg, 0.35 mmol, 100 equiv). The
polymerization was kept at ambient temperature for 24 h. Upon reaching equilib-
rium, iodoacetamide (1.0 M, 300 pL, 5.0 equiv) in THF or trifluoroacetic acid (1.0
equiv) was added to quench the polymerization. The mixture was diluted with
DCM (10 mL), precipitated in isopropanol (450 mL), and collected with centrifuga-
tion. The crude product was further purified by repeating the solution-precipita-
tion-centrifugation cycle twice to obtain a white solid before drying under vacuum
(920 mg, yield 53%).

Full experimental procedures are provided in the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.chempr.
2020.06.003.
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