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ABSTRACT
Based on the recently developed unified theoretical framework [J. Liu, J. Chem. Phys. 145(20), 204105 (2016)], we propose a new perspec-
tive for studying nonadiabatic dynamics with classical mapping models (CMMs) of the coupled multistate Hamiltonian onto the Cartesian
phase space. CMMs treat the underlying electronic state degrees of freedom classically with a simple physical population constraint while
employing the linearized semiclassical initial value representation to describe the nuclear degrees of freedom. We have tested various bench-
mark condensed phase models where numerically exact results are available, which range from finite temperature to more challenging zero
temperature, from adiabatic to nonadiabatic domains, and from weak to strong system-bath coupling regions. CMMs demonstrate overall
reasonably accurate dynamics behaviors in comparison to exact results even in the asymptotic long time limit for various spin-boson models
and site-exciton models. Further investigation of the strategy used in CMMs may lead to practically useful approaches to study nonadiabatic
processes in realistic molecular systems in the condensed phase.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5108736., s

I. INTRODUCTION

There is considerable effort focused on developing practical
trajectory-based dynamics approaches for describing nonadiabatic
processes in complex (molecular) systems in chemistry, biology,
and materials science.1–73 Most of these trajectory-based approaches
can be included in several categories, such as mean field trajec-
tory (MFT) method (Ehrenfest dynamics),2–7 surface hopping,8–24

mixed quantum-classical dynamics,28–32 mixed quantum-classical
path integral,25–27 multiple spawning/cloning,34–38 and Meyer-Miller
mapping Hamiltonian model.39–49,51–61,63 The last category is based
on Meyer and Miller’s pioneering work in which a multi-electronic-
state (MES) Hamiltonian operator was mapped onto continuous
degrees of freedom (DOFs).39 Stock and Thoss have proved that the
Meyer-Miller mapping Hamiltonian is, in principle, exact in quan-
tum mechanics.55 The Meyer-Miller mapping model has offered
a theoretical framework to develop useful nonadiabatic dynamics
and thermodynamics methods.40–49,51–53,55–63,74–76 The two impor-
tant elements often used in the literature of the Meyer-Miller map-
ping model39–49,51–59,62,74 are the following:

(1) The underlying electronic state degrees of freedom (DOFs)
should be quantized and then treated semiclassically or qua-
siclassically for nonadiabatic dynamics to go beyond the con-
ventional Ehrenfest dynamics/mean field trajectory method.

(2) A space of singly excited oscillators (SEOs) should be
employed to construct and apply the Meyer-Miller mapping
model based on Schwinger’s formulation,77,78 which has been
evident from the work by Stock and Thoss55 in 1997 as well as
that by Sun, Wang, and Miller40 in 1998.

We have recently proposed a novel unified framework to con-
struct approaches for the mapping of the multistate Hamiltonian
operator onto the Cartesian phase space. The framework provides
a new way to derive the famous Meyer-Miller model, and more
importantly, it can lead to other exact mapping Hamiltonian models
in the Cartesian phase space. Since the unified framework does not
invoke a space of SEOs in deriving the phase space mapping mod-
els, it presents a new heuristic viewpoint to consider the dynamics
of the coupled multistate Hamiltonian. The purpose of this paper is
to employ the unified framework79 to study nonadiabatic dynamics.
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This paper is organized as follows. Section II first reviews the the-
ory of the unified framework for phase space mapping models for
the multistate Hamiltonian operator and then extends it to deal with
nonadiabatic dynamics where both electronic and nuclear DOFs are
coupled. Section III presents numerical results of various benchmark
model tests for condensed phase systems. Finally, conclusions are
given in Sec. IV.

II. THEORY
A. Mapping models in a unified theoretical framework

Consider a Hamiltonian operator for F orthonormal states,

Ĥ =
F
∑

m,n=1
Hnm∣n⟩⟨m∣. (1)

The Hamiltonian matrix is often a real symmetric one, where Hnm
= Hmn. (For convenience, the reduced Planck constant is set to
̵h = 1 throughout this paper.) We have recently proposed a new
unified theoretical framework to construct equivalent representa-
tions of the multistate Hamiltonian operator and to present several
approaches for the mapping onto the Cartesian phase space.79,80 The
three key elements in the framework are the following:

1) Extend Schwinger’s formulation77,78 to map the F-dimensional
Hamiltonian operator onto an F + 1 dimensional space. That
is, state |n⟩ can be mapped as

(2)

such that it is viewed as a single excitation from the vacuum
state i.e.,

∣n⟩ = â+
n ∣0̄⟩. (3)

Here, an excitation represents the occupation of the corre-
sponding state. The vacuum state ∣0̄⟩ is orthogonal to any
occupied state |n⟩.

2) Define creation and annihilation operators such that the F + 1
dimensional space is complete for all (combined) excitations.
That is,

â+
n = ∣n⟩⟨0̄∣,

ân = ∣0̄⟩⟨n∣.
(4)

Commutation and anticommutation relations are then natu-
rally constructed.79

The multistate Hamiltonian operator of Eq. (1) becomes

Ĥ =
F
∑

m,n=1
Hnmâ+

n âm (5)

with no ambiguity. One also obtains the following relation:

σ̂(n)x = ân + â+
n ,

σ̂(n)y =
ân − â+

n

i
,

(6)

where σ̂(n)x and σ̂(n)y are two Pauli operators (for a spin 1/2
particle).

3) Derive equivalent representations of the Hamiltonian oper-
ator (in terms of {σ̂(n)x , σ̂(n)y }) and propose the criteria for
mapping them onto the Cartesian phase space such that clas-
sical/quasiclassical/semiclassical/quantum dynamics can be
employed.79

The new framework employs only quantum operators to con-
struct the mapping models, without invoking a space of singly
excited oscillators (SEOs) as conventionally used in the literature on
the Meyer-Miller mapping model.40,55 (See Appendix A of Ref. 79
for more discussion.) The unified framework offers a novel way80

to derive the seminal Meyer-Miller mapping model other than the
original ones proposed by Meyer and Miller39 and by Stock and
Thoss.55 It has been shown in Ref. 79 that the general semiclassical
Meyer-Miller mapping Hamiltonian80 is

H =
F
∑

n,m=1

1
2
(x(n)x(m) + p(n)p(m) − γnm)Hnm, (7)

where γnn/2 is set to 1/2 in Meyer and Miller’s original version39,55

or chosen to be (
√

3 − 1)/2 or other optimal values in its semiclas-
sical/quasiclassical applications,42,46,53,56,59,81 while γnm/2 (n ≠ m) is
often set to 0. Equation (7) is a more compact version of Eq. (43) of
Ref. 79. The classical Meyer-Miller mapping Hamiltonian is

H =
F
∑

n,m=1

1
2
(x(n)x(m) + p(n)p(m))Hnm, (8)

while the quantum version is

Ĥ =
F
∑

n,m=1

1
2
(x̂(n)x̂(m) + p̂(n)p̂(m) − 1̂δnm)Ĥnm, (9)

where 1̂ is an identity operator. The Meyer-Miller model involves 2F
phase space mapping variables for the F electronic DOFs.

Similarly, other phase space mapping models can also be devel-
oped from the equivalent representations of the Hamiltonian oper-
ator.79 Another classical mapping model (CMM) for the multistate
Hamiltonian operator [Eq. (1) or (5)] is

H =
F
∑

n,m=1
Hnm(x(n)p(m)y − y(n)p(m)x ), (10)

which is derived from an analogy to the spin angular momentum
in Ref. 79. The mapping Hamiltonian of Eq. (10) for the multi-
state Hamiltonian operator happens to be identical to the mapping
model earlier proposed for the second-quantized many-electron
Hamiltonian by Li and Miller.82 The relation between them can
be established by the isomorphism between the multistate Hamil-
tonian and the second-quantized many-electron Hamiltonian with
only 1-electron interactions.80 We denote Eq. (10) the Li-Miller
mapping model (or spin angular momentum mapping model). It
employs 4F phase space mapping variables for the F electronic
DOFs. As demonstrated in Fig. 5 of Ref. 79, the Li-Miller mapping
model can outperform the Meyer-Miller mapping model in some
regions.
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Four more classical mapping models for the multistate Hamil-
tonian operator (proposed in Ref. 79) are

H =
F
∑

n=1

(x(n) + p(n)y )
2

+ (y(n) − p(n)x )
2

4
Hnn

+ ∑
n≠m
(x(n)p(m)y − y(m)p(n)x )Hnm, (11)

H =
F
∑

n=1

(x(n) + p(n)y )
2

+ (y(n) − p(n)x )
2

4
Hnn

+ ∑
n<m
((x(n)x(m) + p(n)x p(m)x )

+ (y(n)y(m) + p(n)y p(m)y ))Hnm, (12)

H =
F
∑

n=1

(x(n) + p(n)y )
2

+ (y(n) − p(n)x )
2

4
Hnn + ∑

n<m

(x(n) + p(n)y )(x(m) + p(m)y ) + (y(n) − p(n)x )(y(m) − p
(m)
x )

2
Hnm, (13)

and

H =
F
∑

n=1
Hnn(x(n)p(n)y − y(n)p(n)x )

+ ∑
n<m
((x(n)x(m) + p(n)x p(m)x ) + (y(n)y(m) + p(n)y p(m)y ))Hnm.

(14)

Define Pn as the population of the nth state. Conservation of the total
population is

F
∑

n=1
Pn =

F
∑

n=1

1
2
(x(n)x(n) + p(n)p(n)) = 1 (15)

for Eq. (8),

F
∑

n=1
Pn =

F
∑

n=1
(x(n)p(n)y − y(n)p(n)x ) = 1 (16)

for Eq. (10) or (14), or

F
∑

n=1
Pn =

F
∑

n=1

(x(n) + p(n)y )
2

+ (y(n) − p(n)x )
2

4
= 1 (17)

for Eq. (11), (12), or (13). The five mapping Hamiltonian models
[Eqs. (10)–(14)] in the unified framework, which have 4F phase
space mapping variables for the electronic DOFs, can be related to
the Clifford algebra.

It is straightforward to obtain the quantum or semiclassical
counterpart for each of these classical mapping models [Eqs. (10)–
(14)], similar to the one derived for the Meyer-Miller mapping
model by the strategy in the unified framework.79,80 For instance,
the quantum version of the Li-Miller mapping model reads

Ĥ =
F
∑

n,m=1
(x̂(n)p̂(m)y − ŷ(n)p̂(m)x −

1
2

1̂δnm) Ĥnm. (18)

The semiclassical version takes the form

H =
F
∑

n,m=1
Hnm(x(n)p(m)y − y(n)p(m)x − γ̃nm), (19)

where γ̃nm is a parameter accounting for the quantum commuta-
tion.79,80,82,83 γ̃nm can be set to 1/2 (

√

3 − 1)/2, 1/3, or other optimal
values, while γ̃nm(n ≠ m) is often set to 0.

B. Nonadiabatic dynamics with classical
mapping models

When the multistate Hamiltonian of Eq. (1) is employed for a
coupled multi-electronic-state system, it becomes

Ĥ =
F
∑

m,n=1
Hnm(R̂, P̂)∣n⟩⟨m∣ (20)

or equivalently

Ĥ =
F
∑

m,n=1
Hnm(R̂, P̂)â+

n âm, (21)

where R̂ and P̂ are the coordinate and momentum operators of the
nuclear DOFs, respectively.

If one employs the classical Li-Miller mapping Hamiltonian
Eq. (10) for the electronic DOFs in Eq. (21), one obtains

ĤLM =
F
∑

n,m=1
(x(n)p(m)y − y(n)p(m)x )Hnm(R̂, P̂). (22)

When the diabatic representation of electronic states is used, Eq. (22)
becomes

ĤLM =
1
2

P̂TM−1P̂ +
F
∑

m,n=1
(x(n)p(m)y − y(n)p(m)x )Vnm(R̂). (23)

The conservation of the total population Eq. (16) is implicitly used
for the kinetic energy term in Eq. (23). (This is a new observa-
tion that is essentially the key point of this paper.) The classical
Hamiltonian for both nuclear and electronic DOFs is then

HLM(R, P; x, px, y, py)

=
1
2

PTM−1P +
F
∑

n,m=1
(x(n)p(m)y − y(n)p(m)x )Vnm(R), (24)

where x, px, y, and py are the vectors for {x(n)}, {p(n)x }, {y(n)}, and

{p(n)y }, respectively.
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Because the unified framework does not employ SEO states at
all but use quantum operators for mapping the multistate Hamilto-
nian operator onto the Cartesian space, it is natural to do the same
to map any physical operators (related to the electronic state DOFs)
onto the Cartesian space to study nonadiabatic dynamics where elec-
tronic and nuclear DOFs are coupled. For instance, consider the
transition probability from state |n⟩ to state |m⟩,

Tr[ρ̂nuc∣n⟩⟨n∣eiĤt/h̵
∣m⟩⟨m∣e−iĤt/h̵

], (25)

where ρ̂nuc is the initial density operator for the nuclear DOFs.
Equation (25) can be expressed as

Tr[ρ̂nucâ+
n ânexp(

it
̵h
(

F
∑

m,n=1
Hnm(R̂, P̂)â+

n âm))â
+
mâm

× exp(−
it
̵h
(

F
∑

m,n=1
Hnm(R̂, P̂)â+

n âm))]. (26)

Note that the trace in Eq. (25) or (26) is over both the electronic state
DOFs and nuclear DOFs.

If the classical Li-Miller mapping Hamiltonian Eq. (10) for the
electronic DOFs is used, the expression of Eq. (26) is related to

⟨Pn(0)Pm(t)⟩CMM

= ∫ F
∑
n=1

Pn(0)=1
dx(0)dpx(0)dy(0)dpy(0)Trnuc

× [ρ̂nucPn(0) exp(
it
̵h
ĤLM) Pm(0) exp(−

it
̵h
ĤLM)]. (27)

Here, the trace over the electronic DOFs is replaced by an integral
over the mapping phase space (x, px, y, py) with the constraint that
the total population is 1. That is,

F
∑

n=1
Pn(0) = 1 and 0 ≤ Pn(0) ≤ 1 (∀n). (28)

This physical constraint is consistent with the implicit employment
of Eq. (16) (the conservation of the total population) in deriving
the Hamiltonian Eq. (23) or (24) from Eq. (22). The trace over
the nuclear DOFs in Eq. (27) can be approximated by the con-
ventional linearized semiclassical initial value representation (LSC-
IVR),40,84,85 which leads to

⟨Pn(0)Pm(t)⟩CMM = ∫ F
∑
n=1

Pn(0)=1
dx(0)dpx(0)dy(0)dpy(0)

× ∫ dR0dP0ρnucW (R0, P0)Pn(0)Pm(t). (29)

Here, ρnucW is the Wigner function of the density operator ρ̂nuc, i.e.,

ρnucW (R, P) =
1

(2π̵h)f
∫ d∆exp(ipT∆/̵h)⟨R −

∆
2
∣ρ̂nuc∣R +

∆
2
⟩,

(30)

with f being the total nuclear DOFs and Pm(t) is evaluated
along the trajectory (R(t), P(t); x(t), px(t), y(t), py(t)) governed
by Hamilton’s equations of motion defined by the Hamiltonian
Eq. (24). In Eq. (29), any initial (physical) condition that satisfies
Eq. (28) is equally weighted (for the classical mapping Hamiltonian)

throughout the present paper. For convenience, the classical Li-
Miller mapping model [Eq. (24) as the Hamiltonian] with Eq. (29) is
denoted CMM1 (classical mapping model 1) in the rest of this paper.
In Eq. (29) for CMM1, one has

Pm(t) = x(m)(t)p(m)y (t) − y
(m)
(t)p(m)x (t). (31)

With the correlation function ⟨Pn(0)Pm(t)⟩CMM defined in
classical mapping models (CMMs), the expression of the time-
dependent transition probability Eq. (25) from state |n⟩ to state |m⟩
is obtained by the normalization procedure,

Pm←n(t) = F(F + 1)⟨Pn(0)Pm(t)⟩CMM − 1 (∀m). (32)

Equation (32) is the counterpart of CMMs for Eq. (25) or (26) in
quantum mechanics. (See Appendix A for more discussion.) When
the initial electronic state is |n⟩, the population of state |m⟩ as a func-
tion of time is expressed as Eq. (32), while the population difference
between state |n⟩ and state |m⟩ is obtained by Pn←n(t) − Pm←n(t).

Similarly, the classical Meyer-Miller mapping model Eq. (8)
leads to

ĤMM =
F
∑

m,n=1

1
2
(x(n)x(m) + p(n)p(m))Hnm(R̂, P̂). (33)

The classical mapping Hamiltonian for both nuclear and electronic
DOFs for Eq. (20) or (21) is then

HMM(R, P; x, p) =
F
∑

m,n=1

1
2
(x(n)x(m) + p(n)p(m))Hnm(R, P), (34)

where x and p are the vectors for {x(n)} and {p(n)}, respectively.
The classical mapping Hamiltonian for both nuclear and electronic
DOFs in the diabatic representation is

HMM(R, P; x, p)

=
1
2

PTM−1P +
F
∑

n,m=1

1
2
(x(n)x(m) + p(n)p(m))Vnm(R). (35)

Note that the conservation of the total population Eq. (15) is implic-
itly used for the kinetic energy term in Eq. (35) when we derive
Eq. (35) from Eq. (33) or (34). Similar to Eq. (29), replacing the
trace over the electronic DOFs by an integral over the mapping
phase space (x, p) with the constraint that the total population is
1 [i.e., Eq. (28)], one obtains the expression of ⟨Pn(0)Pm(t)⟩CMM
of CMM2,

⟨Pn(0)Pm(t)⟩CMM = ∫ F
∑
n=1

Pn(0)=1
dx0dp0

× ∫ dR0dP0ρnucW (R0, P0)Pn(0)Pm(t), (36)

in Eq. (32) for evaluating Eq. (25) or (26) in quantum mechanics.
Here, Pm(t) is estimated along the trajectory (R(t), P(t); x(t), p(t)),
the equations of motion of which are governed by the Hamilto-
nian Eq. (35). In the present paper, any initial condition subject to
the physical population constraint [i.e., Eq. (28)] is equally treated.
For convenience, the classical Meyer-Miller model [Eq. (35) as the
Hamiltonian] with Eq. (36) is denoted as CMM2 (classical map-
ping model 2) in the rest of this paper. In CMM2, Eq. (32) is also
the expression of the time-dependent transition probability Eq. (25)
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from state |n⟩ to state |m⟩. By following Eqs. (27)–(30) and (32), it
is trivial to extend the formulation to other phase space mapping
models in the unified framework.

Below we investigate the performance of CMMs with various
numerical example tests in the condensed phase. For fair compar-
ison, we also use the MFT (mean field trajectory) method, where
the initial condition for the nuclear DOFs is sampled from the nor-
malized Wigner distribution for the initial density operator for the
bath modes (as done in the LSC-IVR) and then each trajectory is
propagated by the conventional Ehrenfest dynamics.

III. RESULTS AND DISCUSSIONS
A. Spin-boson model

The spin-boson model describes a two-state system coupled to
an environmental harmonic bath, serving as a simple yet86 challeng-
ing model that includes most key aspects of dissipative quantum
systems.87 Benchmark dynamics or thermodynamics results of the
spin-boson model have been achieved by several exact quantum
approaches, including the numerically exact quasiadiabatic propa-
gator path integral (QuAPI) of Makri and co-workers,88–92 multi-
configuration time-dependent Hartree (MCTDH),93–98 hierarchical
equations of motion (HEOM),99–105 and multi-electronic-state path
integral molecular dynamics (MES-PIMD)106,107.

The Hamiltonian operator of the spin-boson model is often
described by

Ĥ =∑
j

1
2
(P̂2

j + ω2
j R̂

2
j ) +
⎛

⎝
∑

j
cjR̂j
⎞

⎠

σ̂z + εσ̂z + ∆σ̂x, (37)

where Rj and Pj are the mass-weighted position and momentum of
the jth mode of the harmonic bath, ε is the energy bias of the two
states, ∆ is the tunneling matrix element of the two states, and σ̂x
and σ̂z are the x-component and z-component of the Pauli opera-
tors, respectively. In Eq. (37), frequencies and coupling coefficients
{ωj, cj} are sampled from a specific spectral density function for the
bath.

A typical kind of bath is the Ohmic bath,87 of which the spectral
density is

J(ω) =
π
2
αωf (

ω
ωc
)Θ(ω), (38)

where Θ(ω) is a Heaviside function, α is the dimensionless Kondo
parameter, and f (ω/ωc) stands for a cutoff function for the lin-
ear spectrum density, which usually employs an exponential form
f (ω/ωc) = e−ω/ωc . That is, for ω ≥ 0, the spectral density function
Eq. (38) of the Ohmic bath takes the form

J(ω) =
π
2
αωe−ω/ωc . (39)

Another typical kind is the Debye bath93,108,109 [which can be viewed
as Eq. (38) with a Lorentzian cutoff], of which the spectral density
reads

J(ω) = 2λ
ωcω

ω2
c + ω2 . (40)

FIG. 1. Population difference [defined as D(t) = P1←1(t) − P2←1(t)] of the spin-
boson Hamiltonian with the Ohmic bath as a function of time. The initial state is
set to |1⟩. Model 1 is a symmetric spin-boson model with the parameters ε = 0,
∆ = 0.1, β = 1, ωc = 0.25, α = 0.09, dt = 0.01, and Nb = 50. The model leads
to typical incoherent relaxation dynamics. Black solid line shows results produced
by the classical Meyer-Miller mapping model (CMM2, classical mapping model 2),
red dashed line illustrates results yielded by the classical Li-Miller mapping model
(CMM1, classical mapping model 1), and light blue dotted-dashed line depicts
results given by the mean-field trajectory (MFT) method. Exact results (produced
by QuAPI in Ref. 88) are shown in dark blue solid circles.

Here, ωc is the characteristic frequency of the bath and λ denotes the
reorganization energy.49,110

In numerical simulations for the spin-boson Hamiltonian
Eq. (37), we discretize the continuous bath into the conventional

FIG. 2. Same as in Fig. 1, but for model 2, of which all parameters are the same
as those of model 1, except a relative low temperature β = 50. The exact data
(produced by QuAPI) are taken from Ref. 88.
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FIG. 3. Same as in Fig. 1, but for model 3, of which the parameters are ε = 0, ∆
= 1, β = 0.25, ωc = 5, α = 0.02, dt = 0.01, and Nb = 50. Exact data (produced by
MCTDH) are taken from Ref. 94.

form40,62,87,109

J(ω) =
π
2

Nb

∑

j=1

c2
j

ωj
δ(ω − ωj). (41)

In this paper, we adopt the discretization scheme in Refs. 56 and
111–115, i.e.,

c2
j =

2
π
ωj

J(ωj)

ρ(ωj)
, (42)

FIG. 4. Same as in Fig. 3, but for ωc = 1 and α = 0.1. (Model 4) Exact data
(produced by MCTDH) are taken from Ref. 94.

FIG. 5. Same as in Fig. 3, but for ωc = 0.25, α = 0.4, and Nb = 100. (Model 5)
Exact data (produced by MCTDH) are taken from Ref. 94.

with ρ(ω) satisfying

∫

ωj

0
dωρ(ω) = j. (43)

Choosing ρ(ω) ∝ (Nb + 1)e−ω/ωc
/ωc for the Ohmic bath leads

to114,115

ωj = −ωc ln[1 − j/(1 + Nb)], j = 1, . . . ,Nb, (44)

cj =
√

αωc

Nb + 1
ωj, j = 1, . . . ,Nb, (45)

FIG. 6. Same as in Fig. 1, but for an asymmetric case (model 6), of which the
parameters are ε = 1, ∆ = 1, β = 0.25, ωc = 1, α = 0.4, dt = 0.01, and Nb = 100.
Exact data (produced by MCTDH) are taken from Ref. 94.
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FIG. 7. Same as in Fig. 6, but for β = 5, ωc = 2, and Nb = 50. (Model 7) Exact data
(produced by QuAPI) are taken from Ref. 116.

where Nb is the number of discretized bath modes. In this paper, we
take ρ(ω)∝ (Nb + 1)/(ω2 + ω2

c) for the Debye bath, which yields114

ωj = ωctan(
π
2
(1 −

j
Nb + 1

)), j = 1, . . . ,Nb, (46)

cj =
√

2λ
Nb + 1

ωj, j = 1, . . . ,Nb. (47)

The spin-boson model is symmetric when ε = 0 and asymmetric
when ε ≠ 0. Different dynamics regimes can be accessed by choos-
ing a variety of parameters: β∆ ≤ 1 often describes the relatively high

FIG. 8. Same as in Fig. 1, but for model 8, of which the parameters are ε = 1, ∆
= 1, β = 5, ωc = 2.5, α = 0.1, dt = 0.01, and Nb = 50. Exact data (produced by
MCTDH) are taken from Ref. 94.

FIG. 9. Same as in Fig. 8, but for α = 0.2. (Model 9) Exact data (produced by
MCTDH) are taken from Ref. 94.

temperature region, while β∆> 1 indicates relatively low tempera-
ture cases; ωc ≤ ∆ usually corresponds to the adiabatic regime, while
ωc > ∆ implies the nonadiabatic domain. The Kondo parameter α or
reorganization energy λ depicts the system-bath coupling strength.
The larger α or λ is, the stronger coupling between the system and
bath is.

In all numerical simulations for the spin-boson model through-
out this paper, the initial density is a product of the density of the
system (i.e., the electronic DOFs) and that of the bath modes (i.e., the
nuclear DOFs). The initial condition for the electronic DOFs is the
excited state of the system (i.e., |1⟩, a pure state). The initial density

FIG. 10. Same as in Fig. 8, but for α = 0.4, Nb = 100. (Model 10) Exact data
(produced by MCTDH) are taken from Ref. 94.
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FIG. 11. Same as in Fig. 1, but for model 11, of which the parameters are ε = 1, ∆
= 1, β = 10, ωc = 2.5, α = 0.2, dt = 0.01, and Nb = 50. Exact data (produced by
QuAPI) are taken from Ref. 86.

of the nuclear DOFs is

ρ̂nuc = e−βĤb
/Zb, (48)

where the bare bath Hamiltonian is

Ĥb =
Nb

∑

j=1

1
2
(P̂2

j + ω2
j R̂

2
j ) (49)

FIG. 12. Same as in Fig. 1, but for a symmetric spin-boson model with the Debye
bath (model 12), of which the parameters are ε = 0, ∆ = 1, β = 0.5, ωc = 0.25, λ
= 0.025, dt = 0.002, and Nb = 100. Exact data (produced by MCTDH) are taken
from Ref. 93.

FIG. 13. Same as in Fig. 12, but for λ = 0.25 (model 13). Exact data (produced by
MCTDH) are taken from Ref. 93.

and Zb = Trnuc[e−βĤb
] is the partition function for the harmonic

bath. The normalized Wigner distribution for the initial density
Eq. (48) is

ρnucW (R, P) =
Nb

∏

j=1

tanh( 1
2β
̵hωj)

π̵h
exp[−

β
2Q(ωj)

(P2
j + ω2

j R
2
j )], (50)

FIG. 14. Same as in Fig. 12, but for model 14 that uses a set of parameters ε
= 0, ∆ = 1, β = 5, ωc = 0.25, λ = 0.25, and dt = 0.002. Exact data (produced by
MCTDH) are taken from Ref. 93.
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FIG. 15. Same as in Fig. 12, but for model 15, of which the parameters are ε = 0,
∆ = 1, β = 0.5, ωc = 5, λ = 0.25, dt = 0.002, and Nb = 100. Exact data (produced
by MCTDH) are taken from Ref. 93.

where the quantum corrector85 Q(ωj) is defined as

Q(ωj) =

1
2β
̵hωj

tanh( 1
2β
̵hωj)

. (51)

1. Spin-boson model with the Ohmic bath
We test 11 spin-boson models where the Ohmic bath is used.

The available benchmark exact results are obtained from QuAPI88 or
MCTDH.94 All simulations employ an ensemble of 106 trajectories

FIG. 16. Same as in Fig. 15, but for β = 50. Exact data (produced by MCTDH) are
taken from Ref. 93.

FIG. 17. Same as in Fig. 12, but for an asymmetric spin-boson model with the
Debye bath (model 17), whose parameters are ε = 1, ∆ = 1, β = 0.5, ωc = 0.25,
λ = 0.25, dt = 0.002, and Nb = 100. Exact data (produced by MCTDH) are taken
from Ref. 93.

and adapt a time step of dt = 0.01. Here, all parameters are in atomic
units (a.u.).

a. Symmetric cases. The first five models (models 1–5) are sym-
metric spin-boson models in the literature. In models 1–2 (from
Ref. 88), the characteristic frequency ωc = 2.5∆ (in the nonadiabatic
regime with a fast bath) and the Kondo parameter α = 0.09 are used.
Model 1 lies in a relatively high temperature regime (β∆ = 0.1),
demonstrating relaxation dynamics with incoherent decay. Model

FIG. 18. Same as in Fig. 17, but for ωc = 5. Exact data (produced by MCTDH) are
taken from Ref. 93.
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FIG. 19. Same as in Fig. 17, but for β = 50 and ωc = 5. Exact data (produced by
MCTDH) are taken from Ref. 93.

2 employs a relatively low temperature (β∆ = 5), exhibiting coher-
ent dynamics with more oscillatory behaviors. Models 3–5 show a
high temperature case β∆ = 0.25 with a series of Kondo parameters
α = 0.02, 0.1, 0.4 (with αωc = 0.1 fixed).94 Figures 1–5 suggest that
CMMs lead to nearly the same results as MFT produces for symmet-
ric spin-boson models. The results are in excellent agreement with
the exact data in the high temperature regime as shown in Figs. 1
and 3–5. In the low temperature regime in Fig. 2, CMMs as well as
MFT also demonstrate overall good performance. The results can
produce accurate oscillation frequencies, although their amplitudes
are slightly less accurate in the long time limit.

In all symmetric cases, CMMs and MFT share similar numer-
ical behaviors and provide a good description on real time
dynamics.

b. Asymmetric cases. Models 6–11 are more challenging asym-
metric spin-boson models with the Ohmic bath studied in the lit-
erature. Model 6 shows a case on the boundary of the adiabatic
and nonadiabatic regions (ωc = ∆), which involves a relatively high
temperature (β∆ = 0.25) and a relatively strong system-bath cou-
pling (α = 0.4). Figure 6 shows that CMMs yield reasonably accu-
rate results in the high temperature region, while the performance
of MFT is slightly worse. Model 7 (from Ref. 116) is a case with
the same strong system-bath coupling strength (α = 0.4) but in the
nonadiabatic region (ωc = 2∆) with a lower temperature (β∆ = 5).
Figure 7 demonstrates that CMMs are capable of reproducing the

FIG. 20. Population of State 1 as a
function of time, which is expressed by
Eq. (32) in CMMs for four spin-boson
models at zero temperature (from Ref.
104), with a biased spin system (ε = 50
cm−1) coupled with a quantum Ohmic
bath, whose parameters are the charac-
teristic frequency ωc = 10 ps−1 = 53.09
cm−1, (a) α = 0.3767, ∆ = 20 cm−1;
(b) α = 1.130, ∆ = 20 cm−1; (c) α
= 0.7535, ∆ = 100 cm−1; and (d) α
= 1.884, ∆ = 100 cm−1. Black solid line
shows results produced by the classi-
cal Meyer-Miller mapping model (CMM2,
classical mapping model 2), red dashed
line illustrates results yielded by the clas-
sical Li-Miller mapping model (CMM1,
classical mapping model 1), and light
blue dotted-dashed line depicts results
given by the mean-field trajectory (MFT)
method. Exact results (produced by ML-
MCTDH in Ref. 104) are showed in dark
blue solid circles.
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critical damping behavior as well as the asymptote in the long time
limit of the exact results (by QuAPI in Ref. 116) in this spin-boson
model. MFT begins to notably deviate from the exact data since fairly
short time t∆ = 1 a.u. and leads to more significant failure for achiev-
ing the correct asymptotic behavior as time increases. More serious
tests are made in Figs. 8–10 for models 8–10 in the low temperature
domain (β∆ = 5) and in the deeper nonadiabatic region ωc = 2.5∆),
in which the Kondo parameters α = 0.1, 0.2, 0.4 range from the weak
to strong system-bath coupling domains (from Ref. 94). Figures 8–
10 demonstrate that the discrepancy between the performance of
CMMs and that of MFT is much more distinct. It is encouraging that
CMMs are able to capture the asymptotic behaviors in the long limit,
showing an overall reasonably good agreement with exact results.
For comparison, MFT fails to reach the correct long-time asymp-
tote of the population difference in all three cases—the stronger
the system-bath coupling strength is, the worse the numerical per-
formance of MFT is. Figure 11 shows numerical results for model
11, which lies in the nonadiabatic region (ωc = 2.5∆) with an even
lower temperature (β∆ = 10) and with the Kondo parameter α =
0.2 (from Ref. 86). The accuracy of CMMs with respect to the exact
results is practically satisfying. They are able to offer a much bet-
ter illustration of the behaviors in the asymptotic limit than MFT
does.

In all asymmetric cases, CMMs produce reasonably accurate
results in the short limit as well as in the long-time asymptotic limit,
while MFT fails to capture the correct asymptotic behaviors—it
becomes progressively worse as the temperature is lower, the system-
bath coupling is stronger, and/or the deeper the nonadiabatic region
is.

2. Spin-boson model with the Debye bath
Comparing Eq. (40) to Eq. (39), it is straightforward to see that

the Debye bath spans a much broader frequency range than the con-
ventional Ohmic bath, which presents more challenging tests for
nonadiabatic dynamics methods. Eight spin-boson models with the
Debye bath (models 12–19) reported in the literature93 are used for
demonstration. [Comparison between Eq. (40) of this paper and Eq.
(2.24) of Ref. 93 defines the value of λ for these models.] All simu-
lations employ an ensemble of 106 trajectories and adapt a time step
of dt = 0.002. (Parameters are in atomic units.)

a. Symmetric cases. Models 12–14 are all symmetric cases in
the adiabatic regime (ωc = 0.25∆). Model 12 is at a relatively high
temperature β∆ = 0.5 with the reorganization energy λ = 0.025 (i.e.,
relatively weak system-bath coupling), model 13 represents a case
with a larger reorganization energy λ = 0.25 (i.e., relatively strong

FIG. 21. Population of site 1 as a function
of time, which is expressed by Eq. (32)
in CMMs for an asymmetric site-exciton
model, where ∆E = V12 = 0.0124 eV, ωc

= 40 cm−1, and Nb = 100, with different
couplings (a) keff = 0.3, (b) keff = 0.5, (c)
keff = 0.7, or (d) keff = 1.0. Markers are
used in the same way as in Fig. 1. Exact
data (produced by MCTDH) are provided
by Ref. 83.
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system-bath coupling) in the high temperature region (β∆ = 0.5),
and model 14 is in the low temperature (β∆ = 5) region with λ =
0.25. All simulation results in comparison to exact data are demon-
strated in Figs. 12–14. Both CMMs and MFT lead to similar results
that are in overall good agreement with the counterpart exact data.
As shown in the comparison between Figs. 13 and 14, numerical
results of CMMs become less accurate in the long time limit when
the temperature decreases.

Models 15–16 are two symmetric examples in the nonadia-
batic regime (ωc = 5∆) with the reorganization energy λ = 0.25,
one in the high-temperature regime (β∆ = 0.5), the other in
the low-temperature domain (β∆ = 50). Figure 15 shows that
CMMs and MTF exhibit excellent numerical performance in the
high-temperature regime for symmetric cases in the nonadiabatic
domain. In contrast, Fig. 16 suggests that CMMs and MTF lead to
less accurate results in the low-temperature regime—they produce
practically accurate oscillation frequencies but their amplitudes are
notably smaller than the exact data.

In all symmetric cases, CMMs and MFT demonstrate very simi-
lar numerical performance and provide reasonably good approxima-
tions to exact quantum dynamics in the adiabatic and nonadiabatic
regions.

b. Asymmetric cases. Asymmetric spin-boson models with the
Debye bath are often more challenging benchmark tests than sym-
metric ones. We focus on three asymmetric cases (in Ref. 93) with
the bias ε = 1 and the reorganization energy λ = 0.25, in which
model 17 is in the adiabatic region (ωc = 0.25∆) and in the high-
temperature region (β∆ = 0.5), model 18 is in the nonadiabatic
region (ωc = 5∆) and in the high-temperature region (β∆ = 0.5),
and model 19 represents another case in the nonadiabatic region (ωc
= 5∆) but in the low-temperature region (β∆ = 50).

Figures 17–19 reveal that CMMs demonstrate significantly dif-
ferent numerical performance from MFT for all three asymmetric
cases, irrespective of whether the spin-boson model is in the adia-
batic or nonadiabatic region. MFT shows poor performance for long
time dynamics in the three cases demonstrated in Figs. 17–19. In
contrast, CMMs are competent approaches to recover most behav-
iors in the asymptotic limit of long time quantum dynamics for all
three asymmetric spin-boson models with the Debye bath.

3. Spin-boson model at zero temperature
Dynamics of the spin-boson model at zero temperature is

much more challenging.87 Numerical simulations usually confront

FIG. 22. Same as in Fig. 21, but for ωc

= 100 cm−1. Exact data (produced by
MCTDH) are taken from Ref. 83.
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slow convergence problems.97,98,104,117 Multilayer MCTDH (ML-
MCTDH)96 and numerical renormalization group118 have provided
benchmark results for some spin-boson models. Four asymmetric
spin-boson models with the Ohmic bath (models 20–23) at zero
temperature from Ref. 104 are tested for CMMs and MTF. All simu-
lations employ an ensemble of 106 trajectories and adapt a time step
of 0.1 fs, with the number of discretized bath modes Nb = 100. The
benchmark exact results (for the population of state 1) are produced
by ML-MCTDH in Ref. 104.

Comparison of Eq. (39) of this paper to Eq. (13) of Ref. 104
produces the value of the Kondo parameter α of the Ohmic bath
used in this paper. Models 20–21 are in the nonadiabatic region (ωc
≈ 2.65 ∆). The system-bath coupling of model 20 is α = 0.3767, and
that of model 21 is much stronger (α = 1.130). As shown in Fig. 20(a)
(for model 20) in comparison to ML-MCTDH, both CMMs and
MFT work well until 100 fs, but MFT demonstrates poor perfor-
mance after 150 fs while CMMs almost faithfully reproduce the exact
results up to 1000 fs. In Fig. 20(b) (for model 21), the discrepancy
between the MFT results and the exact ones becomes severe after
300 fs. In contrast, CMMs show overall good agreement with the
exact results even in the long-time region.

Models 22–23 are in the adiabatic region (ωc = 0.53 ∆). The
amplitude of the oscillation of the population dynamics decays faster

as the system-bath coupling increases, as shown in the comparison
between Fig. 20(c) (for model 22 with α = 0.7535) and Fig. 20(d) (for
model 23 with α = 1.884). MFT works reasonably well for only the
first half of the first oscillation and fails to capture long time behav-
iors. For comparison, the accuracy of the results yielded by CMMs is
significantly more satisfying even at zero temperature.

Regardless of whether the Ohmic or Debye bath is used for the
spin-boson model, and irrespective of whether finite temperature or
more challenging zero temperature is employed, CMMs offer rea-
sonably accurate approaches to study real time dynamics in most
regions as suggested in Figs. 1–20 (especially in asymmetric cases in
Figs. 7–11 and 17–20).

B. Site-exciton model
The site-exciton model has been widely applied to study pho-

toinduced electronic energy transfer processes.44,83,110,119–123 The
Hamiltonian operator of the site-exciton model consists of three
terms,

Ĥ = Ĥs + Ĥb + Ĥsb. (52)

In this paper Ĥs of Eq. (52) describes a system of two localized
(electronic) states, of which the diabatic representation reads

FIG. 23. Same as in Fig. 21, but for ωc

= 200 cm−1. Exact data (produced by
MCTDH) are taken from Ref. 83.
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Ĥs =
2
∑

k=1
∣φk⟩Ek⟨φk∣ +

2
∑

l≠k
∣φk⟩Vkl⟨φl∣. (53)

The bare bath Hamiltonian Ĥb of Eq. (52) is often depicted by the
conventional harmonic bath (for the phonon modes) which takes
the form

Ĥb =
2
∑

k=1

Nb

∑

j

1
2
(P̂2

kj + ω2
kjR̂

2
kj). (54)

The Debye spectral density function is employed for Eq. (54) in this
paper. (That is, Eq. (40) and the discretization algorithm (46)–(47)
are used.) In Eq. (52), Ĥsb denotes the electron-phonon (system-
bath) coupling that is represented by a bilinear function,

Ĥsb = −
2
∑

k=1
∣φk⟩⟨φk∣

Nb

∑

j
ckjR̂kj. (55)

A dimensionless parameter keff defined in the literature,83,123

keff =
√

2λ/ωc, (56)

is employed to characterize the effective electron-phonon coupling.
While the initial condition of the system is prepared on site 1

(i.e., |𝜙1⟩), the initial density of the phonon DOFs (i.e., the bath
modes) is given by the Boltzmann operator of the bare bath Hamil-
tonian at zero temperature. Its normalized Wigner distribution
is

ρnucW (R, P) =
1

(π̵h)Nb

Nb

∏

j=1
exp[−

1
̵hωj
(P2

j + ω2
j R

2
j )]. (57)

We consider asymmetric site-exciton models, in which the
energy difference between the two sites is fixed at ∆E = E1 − E2 =
0.0124 eV and the off-diagonal coupling between the two sites stays
the same as V12 = 0.0124 eV. The dimensionless parameter keff (for
the electron-phonon coupling) is 0.3, 0.5, 0.7, or 1.0. The charac-
teristic frequency ωc is 40 cm−1, 100 cm−1, 200 cm−1, or 500 cm−1,
which ranges from the adiabatic region to the intermediate region,
and then to the nonadiabatic region. In all site-exciton models, we
employ Nb = 100 discretized bath modes.

Fully converged results (of CMMs) for the population of site 1
(i.e., |𝜙1⟩) for all the site-exciton models in this paper are obtained
with an ensemble of ∼105 trajectories, each of which employs an
integration time step dt = 0.01 fs for nuclear DOFs and δt = 0.1dt for
underlying mapping electronic DOFs. Figures 21–24 demonstrate
the comparison of the results produced by CMMs as well as by MTF
to the corresponding exact data yielded by MCTDH.

FIG. 24. Same as in Fig. 21, but for ωc

= 500 cm−1. Exact data (produced by
MCTDH) are taken from Ref. 83.
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As shown in Fig. 21 for the adiabatic region (ωc/V12 = 0.4),
CMMs lead to accurate results while MTF shows more notable devi-
ation from exact data as the time is longer and/or as the electron-
phonon coupling becomes stronger. Figure 22 illustrates the case on
the boundary of the adiabatic and nonadiabatic regions (ωc/V12 =
1). In comparison to the exact results, CMMs demonstrate excellent
numerical performance even in the asymptotic region of long time
dynamics, but MTF performs progressively worse as the electron-
phonon coupling becomes stronger and eventually fails to capture
the correct long time asymptote of the population of site 1. Figure 23
depicts the comparison of CMMs to MTF as well as MCTDH in the
nonadiabatic region (ωc/V12 = 2). The population of site 1 calcu-
lated by CMMs is in overall reasonably good agreement with the
numerically exact MCTDH result. MTF demonstrates poor perfor-
mance even since short time when the electron-phonon coupling is
strong. For example, in Fig. 23(d) where the dimensionless param-
eter for the electron-phonon coupling is keff = 1, MTF fails to yield
even qualitative results since 100 fs, while CMMs still lead to a faith-
ful description of the dynamics behaviors even in the asymptotic
long time limit. Finally, Fig. 24 presents a challenging model test
for condensed phase systems in the nonadiabatic region (ωc/V12
= 5) as ∼7% phonon modes (i.e., vibrational modes) of which the
frequencies are above 4000 cm−1. This is rare in realistic molecu-
lar systems in the condensed phase. Even the high frequency part
of the O–H stretching band in liquid water is below 4000 cm−1, as
demonstrated in experimental vibrational spectra at room temper-
ature. CMMs capture most dynamics behaviors even in the long-
time limit when the electron-phonon coupling is relatively weak (keff
= 0.3 or 0.5), yield semiquantitative results even for the long time
asymptote of the population of site 1 when keff = 0.7 is employed, and
eventually fail to produce the correct asymptotic limit of long time
dynamics despite a faithful description of short time dynamics in the
strong coupling regime (keff = 1.0). CMMs significantly outperform
MFT in all regimes for the asymmetric site-exciton model.

IV. CONCLUSIONS
In this paper, we propose a novel perspective for develop-

ing nonadiabatic dynamics approaches based on classical mapping
Hamiltonian models in the Cartesian phase space developed in the
unified framework.79 It neither includes any adjustable parameters
[such as γnm in Eq. (7) for accounting for the zero-point energy or
quantum commutation for the underlying electronic DOFs] in the
mapping Hamiltonian of both electronic and nuclear DOFs [e.g.,
Eq. (24) for the classical Li-Miller Hamiltonian or Eq. (35) for the
classical Meyer-Miller Hamiltonian] nor invokes any SEO states to
construct the mapping Hamiltonian or initial conditions. Without
these two critical elements used in nearly all applications of the orig-
inal Meyer-Miller mapping model,39–42,48,51,53–59,62 classical phase
space mapping models are useful to develop nonadiabatic dynam-
ics approaches beyond the MFT (Ehrenfest dynamics) method. The
trace over the electronic DOFs is replaced by the physical require-
ments that the total population is 1 and that the population of each
state has to be non-negative and not larger than 1. Various bench-
mark numerical tests of spin-boson models and of site-exciton mod-
els suggest that CMMs can faithfully capture most dynamics behav-
iors in the short time region as well as in the asymptotic long time
region.

It is easy to show that CMMs do not encounter the inverted
potential energy surface problem during the evolution of the trajec-
tory because Hamilton’s equations of motion generated in CMMs
guarantee that the population term of each electronic state in the
classical mapping Hamiltonian is non-negative. For instance, once
the initial condition is chosen from Eq. (28), x(n)p(n)y −y(n)p

(n)
x = Pn

is always no less than 0 for any state n in the classical Li-Miller

Hamiltonian of Eq. (23) in CMM1 or 1
2[(x

(n)
)

2
+ (p(n))

2
] = Pn is

guaranteed to be non-negative in the classical Meyer-Miller Hamil-

tonian of Eq. (35) in CMM2. (Because
F
∑

n=1
Pn = 1 is a constant of

motion, one obtains 0 ≤ Pn ≤ 1 for any state n.) This can be general-
ized to any other CMMs developed in the unified framework and can
be useful for applications to realistic molecular systems. All CMMs
can be equally treated in the same simple fashion.

In addition to the LSC-IVR40,84,85,124–127 for dealing with the
dynamics of the nuclear DOFs, other nuclear quantum dynamics
methods (such as path integral Liouville dynamics,128,129 deriva-
tive forward-backward semiclassical dynamics,130–133 other SC-IVR
versions,134–136 ring polymer molecular dynamics,65–67,72,73,113,137–140

and centroid molecular dynamics71,141–143) can also be naturally
implemented in the formulation [e.g., Eq. (27) or its other equiv-
alent versions] of CMMs. The new viewpoint in CMMs can
also have implication for nonadiabatic dynamics with semiclas-
sical/quasiclassical mapping models in the Cartesian phase space
since the pioneering work by Meyer and Miller.39 It will be inter-
esting in future work to do more investigation for the new view-
point (for replacing the trace over the electronic DOFs by the con-
straints for physical requirements) and then develop novel practi-
cal nonadiabatic dynamics methods that go beyond conventional
MTF,2–7 surface hopping,8–24 and mixed quantum-classical dynam-
ics,28–32 complementing numerically exact approaches (QuAPI,88–92

MCTDH,93–98 HEOM,99–105 and others144,145) for studying more
general large/complex anharmonic systems (in the condensed
phase).

Along with recent progress on the symmetrical quasiclassi-
cal (SQC) dynamics with the (triangle) window function tech-
nique,42–53 we expect that the results presented in this paper as
well as the unified framework79 and the isomorphism80 will encour-
age more researchers83,123 to investigate the Meyer-Miller mapping
model39,55,79 as well as other phase space mapping models79,82 for
not only the nonadiabatic dynamics of coupled two- or multi-
electronic-state systems but also the nonequilibrium dynamics of the
second-quantized many-electron Hamiltonian.146
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APPENDIX A: FROZEN NUCLEAR CONFIGURATION
LIMIT

In the frozen nuclear configuration limit, the time-dependent
Schrödinger equation reads

i̵hċ(t) = Hc(t). (A1)

Here, c(t) is a vector for the amplitudes for being in the dif-
ferent electronic states at time t and the Hamiltonian (for a fix
nuclear configuration) H is constant. Define the density matrix
ρ̃(t) = c(t)c+

(t), and its time evolution is given by

ρ̃(t) = U(t)ρ̃(0)U+
(t), (A2)

where U(t) = e−iHt/h̵ is the evolution matrix. Define ρ̃ij the element
in row i and column j of ρ̃ and ck the kth element of c.

In CMMs, the initial condition from the trace in the electronic
DOFs is expressed as

ck =
√

Nkexp[iθk] (∀k), (A3)

where the phase of each state is sampled from the independent
identical uniform distribution between 0 and 2π, i.e.,

θk
iid
∼ U[0, 2π), (A4)

while the action is sampled from the uniform distribution on the
surface,

F
∑

k=1
Nk = 1 with 0 ≤ Nk ≤ 1(∀k). (A5)

For simplicity, we use Θ and Σ to denote Eqs. (A4) and (A5), respec-
tively. Assume that the initial occupation is on the ith electronic
state. Consider the population transfer from state i to state j,

⟨ρ̃jj(t)ρ̃ii(0)⟩Θ,Σ = ⟨(U(t)ρ̃(0)U
+
(t))jjρ̃ii(0)⟩Θ,Σ

. (A6)

Note that ρ̃ii(0) is a scalar and that the initial conditions Θ and Σ are
independent of the evolution matrix U(t). We recast Eq. (A6) into

⟨ρ̃jj(t)ρ̃ii(0)⟩Θ,Σ = (U(t)⟨ρ̃(0)ρ̃ii(0)⟩Θ,ΣU+
(t))jj. (A7)

All off-diagonal terms of ρ̃(0)ρ̃ii(0) disappear after averaging over
the initial sampling of the phase [Eq. (A4)], i.e.,

⟨ρ̃jk(0)ρ̃ii(0)⟩Θ = ⟨
√

NjNke
i(θj−θk)Ni⟩

Θ
= NjNiδjk. (A8)

Only diagonal elements of ⟨ρ̃(0)ρ̃ii(0)⟩Θ,Σ, the 2nd matrix in the
RHS of Eq. (A7), are nonzero. Its jth diagonal element becomes

⟨ρ̃jj(0)ρ̃ii(0)⟩Θ,Σ = ⟨NjNi⟩Σ. (A9)

Here, ⟨NjNi⟩Σ stands for the average value of N jN i over the initial
condition Eq. (A5).

Define S(F) = ∫
1

0 dN1⋯ ∫
1

0 dNFδ(
F
∑

k=1
Nk − 1) and xk = λNk. It

is easy to show

∫

λ

0
dx1⋯∫

λ

0
dxFδ(

F
∑

k=1
xk − λ)

= λF ∫
1

0
dN1⋯∫

1

0
dNFδ(λ

F
∑

k=1
Nk − λ)

= λF−1
∫

1

0
dN1⋯∫

1

0
dNFδ(

F
∑

k=1
Nk − 1)

= λF−1S(F). (A10)

Equation (A10) proves that constraint Σ is a F − 1 dimensional
measure. One can then show

∫

1

0
dN1⋯∫

1

0
dNFδ(

F
∑

k=1
Nk − 1)

= ∫

1

0
dNj

⎧
⎪⎪
⎨
⎪⎪
⎩

⎡
⎢
⎢
⎢
⎢
⎣

F
∏

k≠j
∫

1−Nj

0
dNk

⎤
⎥
⎥
⎥
⎥
⎦

δ
⎛

⎝

F
∑

k≠j
Nk − (1 −Nj)

⎞

⎠

⎫
⎪⎪
⎬
⎪⎪
⎭

= ∫

1

0
dNj(1 −Nj)

F−2S(F − 1). (A11)

That is, ρΣ(N j) the marginal density distribution of N j(∀j) subject to
the population constraint Eq. (A5) satisfies

ρΣ(Nj)∝ (1 −Nj)
F−2. (A12)

Equation (A12) leads to

⟨Ni⟩Σ =
∫

1
0 NiρΣ(Ni)dNi

∫

1
0 ρΣ(Ni)dNi

=
1
F

(A13)

FIG. 25. Same as in Fig. 11. Red long-dashed line, black solid line, green short-
dashed line, blue hollow diamonds, red hollow circles, and green hollow squares
illustrate results of CMM1-CMM6 (see Appendix B). For comparison, light blue
dotted-dashed line depicts results of MFT, while dark blue solid circles show exact
results (produced by QuAPI in Ref. 86).

J. Chem. Phys. 151, 024105 (2019); doi: 10.1063/1.5108736 151, 024105-16

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

and

⟨N2
i ⟩Σ =

∫

1
0 N2

i ρΣ(Ni)dNi

∫

1
0 ρΣ(Ni)dNi

=
2

F(F + 1)
. (A14)

Substituting Eqs. (A13) and (A14) into the equality

⟨N2
i ⟩Σ = ⟨Ni(1 −

F
∑

j≠i
Nj)⟩

Σ

= ⟨Ni⟩Σ − (F − 1)⟨NjNi⟩Σ,j≠i (A15)

yields

⟨NjNi⟩Σ,j≠i =
1

F(F + 1)
. (A16)

Equations (A8), (A9), (A14), and (A16) lead to

⟨ρ̃(0)ρ̃ii(0)⟩Θ,Σ =
1

F(F + 1)
P(i)(0) +

1
F(F + 1)

I. (A17)

Here, I is an identity matrix that is independent of the initial state
i. P(i)(0) is a matrix whose elements are P(i)jk (0) = δijδjk. That is, of

FIG. 26. Comparison of CMM to
SQC/MM for six spin-boson models with
the Ohmic bath, which are models 1–2
(symmetric cases), models 7–8, model
11, and model 24 (asymmetric cases).
Parameters of models 1–2, models 7–8,
and model 11 are shown in Figs. 1 and
2, Figs. 7 and 8, and Fig. 11. Parameters
for model 24 are ∆ = 1, ε = 1, β
= 0.25, ωc = 1, α = 0.1, dt = 0.01, and Nb
= 50. The CMM, SQC, MFT, and exact
results are shown in black solid line, red
dashed line, blue dashed-dotted line,
and dark blue solid circles, respectively.
Exact results of model 24 produced by
MCTDH are taken from Ref. 94.
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matrix P(i)(0) the element in row i and column i is one, while all
other elements are zero.

Substituting Eq. (A17) into Eq. (A7) produces

⟨ρ̃jj(t)ρ̃ii(0)⟩Θ,Σ =
1

F(F + 1)
(U(t)P(i)(0)U+

(t))
jj

+
1

F(F + 1)

=
1

F(F + 1)
P(i)jj (t) +

1
F(F + 1)

. (A18)

Recall

P(i)jj (t) = ⟨j ∣U(t)P
(i)
(0)U+

(t)∣ j⟩

= ⟨j ∣U(t)∣i⟩⟨i∣U+
(t)∣ j⟩

= ∣⟨j∣e−iĤt/h̵
∣i⟩∣

2

= Pj←i(t). (A19)

That is, in the frozen nuclear configuration limit, P(i)jj (t) is simply
the exact population transfer from state i (the initial state) to state j
(the final state). Substituting Eq. (A19) into Eq. (A18) leads to

Pj←i(t) = F(F + 1)⟨ρ̃jj(t)ρ̃ii(0)⟩Θ,Σ − 1. (A20)

That is, the formulation [Eq. (A20)] reproduces the results gener-
ated by the time-dependent Schrödinger equation for the electronic

state DOFs in the frozen nuclear configuration limit. When nuclear
equations of motion are considered in CMMs, Eq. (A20) is the
formulation for the population transfer in nonadiabatic dynamics.
Equation (32) of Sec. II B is another expression for Eq. (A20).

APPENDIX B: OTHER CLASSICAL MAPPING MODELS
FOR NONADIABATIC DYNAMICS

In the unified framework of Ref. 79, in addition to the Li-
Miller model as well as the Meyer-Miller model, four more map-
ping models are proposed. In this paper, we focus on classical map-
ping models. We extend the formulation [Eqs. (24) and (29) for
the Li-Miller mapping model] to the other four mapping Hamil-
tonian models [Eqs. (11)–(14)], which we denote CMM3, CMM4,
CMM5, and CMM6, respectively. As demonstrated in Ref. 79, the six
mapping models demonstrate different numerical performance and
can be viewed as different integrators for the exact time-dependent
Schrödinger equation when nuclear DOFs are frozen. Similarly,
when the six CMMs are used to study nonadiabatic dynamics,
because all these CMMs are treated in the same fashion, it is expected
that they should lead to the same results, although the convergence
behavior can be different. We use a challenging model—model 11
(a spin-boson model coupled with the Debye bath)—to test all six
CMMs. Figure 25 indicates that all six CMMs yield the same con-
verged results. This is also true for all other spin-boson models or
site-exciton models presented in this paper.

FIG. 27. Comparison of CMM to
SQC/MM for four spin-boson models
with the Debye bath, which are model
16 (symmetric case) and models 17–19
(asymmetric cases). Parameters are
listed in Figs. 16–19. Markers are the
same as in Fig. 26.
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FIG. 28. Comparison of CMM to
SQC/MM for four asymmetric spin-
boson models with the Ohmic bath
at zero temperature (models 20–23).
Parameters are listed in Fig. 20. Markers
are the same as in Fig. 26.

When the six Hamiltonian models in the phase space are
treated semiclassically or quasiclassically, they may show different
numerical behaviors if not treated in the same fashion.

APPENDIX C: COMPARISON OF CLASSICAL MAPPING
MODELS TO SYMMETRICAL QUASICLASSICAL
MEYER-MILLER APPROACH

The symmetrical quasiclassical Meyer-Miller (SQC/MM)
approach with the window function technique42–53 has been demon-
strated as a promising nonadiabatic dynamics method. We employ
the most recent version of the SQC/MM approach (with the triangle
window function)48,50,52,53 for comparison to CMMs. We investigate
six typical spin-boson models with the Ohmic bath (as shown in
Fig. 26) and four typical spin-boson models with the Debye bath (as
shown in Fig. 27).

When symmetric spin-boson models are studied as shown in
Fig. 26(b) (for model 2) and Fig. 27(a) (for model 16), SQC/MM
leads to faster decay in comparison to CMMs as well as numerically
exact approaches. When asymmetric spin-boson models are con-
sidered, SQC/MM demonstrates slightly better performance than
CMMs in Fig. 26(f) (for model 24), Fig. 27(c) (for model 18), and
Fig. 28(d) (for model 23), while CMMs mildly outperform SQC/MM
in Fig. 26(c) (for model 7), Fig. 26(d) (for model 8), Fig. 26(e)
(for model 11), Fig. 27(d) (for model 19), Fig. 28(b) (for model
21), and Fig. 28(c) (for model 22). Although different strategies are

employed, CMMs show overall comparable accuracy to SQC/MM.
It will be interesting in future work to thoroughly investigate the
new strategy proposed in this paper and those strategies used in
other nonadiabatic dynamics methods based on phase space map-
ping models39–49,51–63,75,76 to formulate a more accurate and prac-
tical trajectory-based approach for condensed phase nonadiabatic
systems.
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