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ABSTRACT: First-principles prediction of electronic band structures of materials is
crucial for rational material design, especially in solar-energy-related materials science.
Hybrid functionals that mix the Hartree−Fock exact exchange with local or semilocal
density functional approximations have proven to be accurate and efficient alternatives to
more sophisticated Green’s function-based many-body perturbation theory. The optimal
fraction of the exact exchange, previously often treated as an empirical parameter, is closely
related to the screening strength of the system under study. From a physical point of view,
the screening has two extreme forms: the dielectric screening [1/ϵM] that is dominant in
wide-gap materials and the Thomas−Fermi metallic screening [exp(−ζr) ] that is
important in narrow-gap semiconductors. In this work, we have systematically investigated
the performances of a nonempirical doubly screened hybrid (DSH) functional that
considers both screening mechanisms and found that it excels all other existing hybrid
functionals and describes the band gaps of narrow-, medium-, and wide-gap insulating
systems with comparably good performances.

In recent years, first-principles electronic structure theory,
represented by density functional theory (DFT) in the local

density approximation (LDA) or various generalized gradient
approximations (GGAs), has gained tremendous popularity in
condensed matter physics and materials science.1−3 However,
the widely used local/semilocal approximate functionals have
long been plagued by the systematic underestimation of the
band gap of insulating materials,4,5 especially for narrow-gap
semiconductors (NGS), which are often wrongly described as
metallic. Furthermore, closely related to this so-called “band
gap problem”, the first-principles description of a lot of other
properties, such as the defect formation energy6 and the
ionization potential of semiconducting materials,7−12 also
exhibits significant errors. In contrast, hybrid functionals that
mix a fraction of Hartree−Fock (HF) exact exchange with
LDA/GGAs can provide significant improvement for those
properties as well as the band gap. Commonly used hybrid
functionals such as PBE0,13,14 which incorporates 1/4 of the
Hartree−Fock exact exchange, HSE,15,16 which is similar to
PBE0 but uses a screened Coulomb interaction for the exact
exchange part with an empirically determined screening
parameter, and the well-known B3LYP functional,17,18 have
been widely tested in description of the band gap and
thermodynamic properties of semiconductors.19−23 Despite
their significantly improved performances in describing the
electronic band structure of typical semiconductors with respect
to LDA/GGA,23 the accuracy of each hybrid functional tends to
be limited to a certain class of materials. For example, the HSE
functional with the empirically determined screening parameter
performs very well in describing semiconductors with the band
gap falling in the range of 1−3 eV but tends to underestimate

the band gaps of wide-gap insulators. Similar problems also
exist for other hybrid functionals with fixed parameters.24−26

Many-body perturbation theory in the GW approxima-
tion27,28 has been systematically developed in the past decades
and is regarded as one of the most accurate approaches to
electronic band structure properties of materials.4,29−31 Unlike
many other methods, the GW method is able to describe the
band gaps of various normal insulating materials with essentially
comparable accuracy. One of the most important features of the
GW method is its capability to accurately describe screening
effects of different strength in different materials. The success of
the hybrid functionals can also be rationalized based on the GW
description of screening effects.26,32,33 In particular, it has been
noted that the fraction of the Hartree−Fock exact exchange αHF
is closely related to the screening strength of the system, as
described by its macroscopic dielectric constant (ϵM), which is
system-dependent. On the basis of such a link between αHF and
ϵM, several new hybrid functional approaches have been
proposed recently.26,32−36 In this work, we further exploit the
link between the GW approach and the hybrid functionals and
emphasize the importance of considering both dielectric
screening (dominant in insulators) and short-range metallic
screening (important for NGSs) in the hybrid functional
framework for accurate description of both NGSs and wide-gap
semiconductors.
As has been realized by many researchers,26,32,37 the success

of the hybrid functional approach to the band gap problem can
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be attributed to its relation to the GW approach. In particular, it
can be regarded as a further approximation to the Coulomb
hole and screened exchange (COHSEX) approximation to the
GW exchange−correlation self-energy, which can be obtained
by neglecting the frequency dependence of the screened
Coulomb interaction W in the GW self-energy28
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The screened Coulomb potential W above is defined as

∫ω ω ν′ = ″ ϵ ″ ″ ′−W r r r r r r r( , ; ) d ( , ; ) ( , )1
(2)

where ϵ−1(r,r″;ω) is the inverse dielectric function and ν(r″,r′)
denotes the bare Coulomb potential. In the following
formalism, we use νsc(r,r′) to denote the static approximation
to W, i.e., νsc(r,r′) ≡ W(r,r′;ω=0) . The main effect of the
inverse dielectric function is to reduce the effective strength of
electron−electron interaction, and the simplest approximation
is to replace ϵ−1(r,r″) by a constant scaling factor equal to the
inverse of the macroscopic dielectric constant 1/ϵM, such that
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When approximating the local COH term by LDA or GGA,
this gives the dielectric-dependent hybrid (DDH) func-
tional.26,32 Marques et al.32 proposed using 1/ϵM calculated at
the LDA/GGA level as the system-dependent αHF and obtained
quite good agreement with experiment for many semi-
conductors. Skone et al.26 found that a self-consistent
determination of αHF can further improve the agreement with
experiment for theoretical prediction of band gaps of typical sp
insulating materials.26 The self-consistent DDH functional has
been used for a variety of different systems33,38−41 and also
extended to finite systems.42

From a physical point of view, the DDH approach only
grasps one aspect of screenings in real solids, i.e., that of the
dielectric screening, which is dominant in wide-gap insulators.
It is therefore not surprising that the most significant
improvement of the DDH approach compared to PBE0 is
observed in systems with large band gaps. For the latter, the
PBE0 approach, with a fixed αHF = 0.25, often underestimates
the band gap.26,32 In contrast, the DDH approach uses
significantly larger αHF for those systems due to their smaller
dielectric constants and therefore predicts significantly larger
band gaps that are in better agreement with experiment.35 On
the other hand, the DDH approach still exhibits significant
errors for systems with narrow band gaps.33,35 Physically, it can
be attributed to the fact that other screening mechanisms can
become important for NGSs. In the limit of metallic systems,
the Thomas−Fermi screening, in which the effective screened
Coulomb interaction takes the form of the Yukawa potential,
becomes dominant.43 To describe the band gaps of materials of

different nature in the hybrid functional framework, it is crucial
to consider both dielectric and metallic screenings with system-
dependent screening parameters. For that purpose, we take a
similar strategy as that in ref 34 and use a simple model
dielectric function44

αϵ = + ϵ − +−
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where qTF denotes the Thomas−-Fermi screening parameter
and α = 1.563 is an empirical parameter introduced to better
describe the dielectric function of typical semiconductors
according to ref 44. The corresponding screened Coulomb
potential takes the form of
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where qT̃F is defined as an effective Thomas−Fermi screening
parameter
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It is obvious that in eq 6 the first term corresponds to the
dielectric screening, which considers the full range of a scaled
Coulomb interaction, and the second term represents the
metallic screening, which considers only the short-range
contribution. To simplify the implementation, we further use
the complementary error function (erfc) to approximate the
second term in eq 6 following ref 34
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with μ = ̃q2

3
TF . Using the screened Coulomb interaction with

both dielectric and metallic screening considered above, we
obtain the following doubly screened hybrid (DSH) exchange−
correlation potential
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and Vx
PBE,LR(r) is the long-range part of the PBE exchange

functional (the same one as that used in the HSE functional15),
which is introduced to compensate the missing long-range
contribution corresponding to the second term. The corre-
sponding exchange−correlation energy can then be written as

γ ν ρ ν ρ= ′ − +E E E Er r r r[ ( , ); ] [ ( ); ] [ ( )]xc x
HF

sc x
PBE

sc xc
PBE

(11)
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where the first and second terms are the Hartree−Fock and
PBE exchange energies calculated using the screened Coulomb
interaction νsc, respectively. We note that the consideration of
the third term (VPBE,LR), which is neglected in previous
works,34,45,46 is important to obtain a consistent description of
both the potential and the total energy in the generalized
Kohn−Sham framework.47,48

In practice, the work flow of DSH is illustrated in Figure 1.
We have implemented the DSH approach in Vienna ab initio

simulation package (VASP),49 based on its existing implemen-
tation of the screened hybrid functional module.21 Several
different approaches have been used for the calculation of the
dielectric constant, including the Berry phase approach,50−53

density functional perturbation theory (DFPT),54,55 and the
random phase approximation (RPA) method,56 depending on
the nature of the systems concerned. The Berry phase approach
is the first choice because it is suitable for semiconductors and
requires a relatively small k-mesh. For some systems, however,
the band gap from PBE, which is used as the first step, is rather
small, and thus, the Berry phase approach is no longer suitable
due to the possible Zener tunelling.57 Therefore, we use the
DFPT method in the first step instead. The RPA approach is
seldom used as it requires a summation of unoccupied states,
usually on a fine k-mesh, and more importantly, it does not
consider the local field effect.24 The only cases for which we use
the RPA approach are those with small band gaps. Besides the
self-consistent DSH, we also consider the one-shot scheme that
uses the dielectric constant from the PBE calculation without
further updating, which is denoted as DSH0 henceforth.
All calculations are performed by using the VASP code with

the projector augmented-wave (PAW) approach to core−
valence interactions.58,59 Various density functional approx-
imations have been used, including PBE GGA60 and a series of
hybrid functions, PBE0,13 HSE06,15,16 self-consistent DDH,26

and our newly proposed DSH functional. The experimental
crystal structures, with lattice constants taken from ref 61, are
used to facilitate the comparison with experiment. The energy
convergence criterion is chosen to be 10−6 eV for self-
consistent field (SCF) iterations. By default, we use the

ENMAX value in the PAW pseudopotential provided by VASP
as the energy cutoff for the plane-wave expansion, unless
otherwise specified, and a Γ-centered k-mesh of Nk = 6 × 6 × 6
is used for all cubic crystals. For noncubic crystals (such as
those with the wurtzite structure), we take the number of k
points along the axis of the smallest lattice constant to be 6, and
those of the remaining axes are scaled to ensure roughly the
same k-space spacing. We checked the convergence of the DSH
calculation with respect to Nk in several representative
semiconductors including Si, PbS, and ZnOw (ZnO in the
wurtzite structure) by using a finer k-mesh of 8 × 8 × 8 (8 × 8
× 6 for ZnOw) and found that the DSH band gaps change by
less than 0.02 eV, indicating that our calculations are well
converged with respect to Nk. The macroscopic dielectric
constant used in the DDH and DSH approaches is taken as the
maximal value of the diagonal elements of the dielectric
constant tensor. The Thomas−Fermi screening parameter in
the DSH approach is calculated in terms of the averaged
valence electron density (including semicore d electrons for
post-transition metal elements like Zn).
sp Semiconductors. We first investigate the performance of the

DSH approach in both the one-shot and self-consistent
schemes and make a comparison with other approaches for a
set of typical sp semiconductors and insulators that are widely
used as the test set for electronic band structure calculations of
solids19,23,62,63 due to their simplicity in both crystal and
electronic structures and relatively well-compiled experimental
measurements.61,64 The band gaps calculated from different
approaches are collected in Table 1.
Several features are noteworthy from Table 1. As expected,

PBE significantly underestimates the band gaps of all
considered systems by as much as 51% in terms of the mean
absolute relative error (MARE). In particular, GaSb, a NGS, is
predicted by PBE to be metallic once the correction from the
spin−orbit coupling (SOC) is considered. For wide-gap
semiconductors, the errors of PBE results can be several eV,
which is certainly unacceptable for any realistic description of
electronic band structure of real materials. By mixing 1/4 of the
exact exchange with PBE exchange, PBE0 has improved the
band gap description to a large extent, and the MARE is now
reduced to be about 22%. A closer look at the PBE0 results
clearly indicates that PBE0 tends to overestimate band gaps of
NGSs and underestimate the band gaps of wide-gap insulators,
which explains the fact the mean absolute error (MAE) of the
PBE0 results is significantly larger than the mean error (ME).
The difficulty of PBE0 can be overcome to some extent by the
DDH approach, which can adjust the contribution of the exact
exchange in terms of the screening strength. The MARE of the
DDH results is reduced to 10%. The performances of the DDH
approach indicated by our calculations are consistent with those
of the previous study.26 The screened hybrid functional HSE06,
which differs from PBE0 by using a screened Coulomb
interaction in the exact change part,15,16 also shows significant
improvement with respect to PBE0 with a MARE of 13%,
especially for systems with a small or moderate band gap, but
tends to underestimate the band gap of wide-gap insulators,
even more strongly than PBE0.
We then turn to the results of the DSH approach that

considers both dielectric and metallic screening with system-
dependent screening parameters (see Figure 2 for a more clear
illustration of the accuracy of DSH compared to experiment).
Both the one-shot (DSH0) and self-consistent (sc-DSH)
schemes lead to theoretical prediction in good agreement

Figure 1. Illustration of the self-consistent procedure of the DSH
functional.
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with experiment, with the MARE smaller than 10%. For many
systems, the DSH results agree well with those from
numerically highly accurate GW0@PBE calculations. The latter,
taken from ref 63, are obtained by an all-electron
implementation of GW with LAPW plus high-energy local
orbitals (HLOs) basis. Generally speaking, the MARE within
10% is accurate enough for comparison with experiment due to
the uncertainty of experimental preparations and measure-

ments.63 One can also see that the overall performance of the
DSH0 approach is even better than the sc-DSH approach for
the selected set of semiconductors and insulators.
Narrow-Gap Semiconductors. NGSs are a class of important

materials typically with a band gap of less than 0.5 eV, which
are widely used in infrared detection and thermoelectrics.65

Here we use NGS in a more broad sense and refer to
semiconductors with experimental band gaps of less than 1 eV.
The band gap of a NGS is much more difficult to predict
accurately. LDA/GGA tends to predict it to be metallic, and in
that case, even GW-based approaches can have difficulty
because G0W0 or GW0 with the qualitatively wrong LDA/GGA
starting point cannot give reliable results, and other GW
variants like hybrid functionals-based G0W0 or quasi-particle
self-consistent GW (QSGW)66 tend to significantly over-
estimate the band gap.67

Here we select a series of NGSs, namely, Ge, GeTe, SnSe,
GaSb, InX (X = N, As, Sb), and PbX (X = S, Se, Te), and
calculate their band gaps by PBE, PBE0, HSE06, DDH, and
DSH functionals; see Table 2. The results clearly show that
PBE completely fails for the selected set of NGSs and predicts
most of them as metallic once the SOC effect is taken into
account. On the other hand, PBE0 systematically overestimates
the band gaps of these systems, with an overall MARE of

Table 1. Band Gaps (in eV) of Typical sp Semiconductors Calculated by the One-Shot and Self-Consistent DSHs (Denoted as
DSH0 and sc-DSH, Respectively) Compared to Those from Other Approachesa

syste ϵPBE ϵDSH PBE(SOC) PBE0 HSE06 DDH DSH0 sc-DSH GW0 expt

C 5.76 5.62 4.11 6.09 5.32 5.51 5.63 5.66 5.87 5.48
Si 12.18 10.98 0.56 1.96 1.30 0.98 1.12 1.16 1.19 1.17
SiC 6.80 6.33 1.34 2.98 2.25 2.35 2.49 2.55 2.53 2.42
BN 4.57 4.36 4.41 6.52 5.75 6.33 6.52 6.60 6.61 6.4
BP 8.88 8.29 1.33 2.79 2.08 2.00 2.11 2.16 2.20 2.1, 2.4
AlNw 4.69 4.21 4.13 6.21 5.49 6.05 6.07 6.25 6.11 6.2−6.3
AlP 7.88 7.17 1.57 2.95 2.28 2.31 2.44 2.51 2.51 2.51
AlAs 8.99 7.96 1.33 (0.10) 2.66 2.00 1.95 2.15 2.22 2.17 2.1
AlSb 11.02 9.14 0.99 (0.22) 2.24 1.61 1.45 1.78 1.87 1.57 1.6
GaN 5.65 4.95 1.73 3.67 2.97 3.23 3.39 3.57 3.21 3.30
GaP 9.66 8.55 1.66 2.99 2.32 2.24 2.39 2.46 2.30 2.26
GaAs 12.43 10.09 0.48 (0.11) 1.95 1.33 0.99 1.42 1.51 1.23 1.42
GaSb 18.32 12.15 −0.06 (0.23) 1.30 0.70 0.27 0.72 0.86 0.51 0.81
InP 10.00 8.49 0.74 2.15 1.52 1.33 1.54 1.63 1.27 1.34
ZnO 5.10 3.39 0.65 3.03 2.34 3.30 3.23 4.02 3.32 3.4
ZnOw 5.07 3.38 0.78 3.18 2.49 3.46 3.40 4.19 3.55 3.4
ZnS 5.81 4.85 2.07 3.96 3.30 3.51 3.83 4.04 3.61 3.68
ZnSe 7.03 5.59 1.15 (0.13) 2.91 2.28 2.26 2.73 2.95 2.54 2.7
ZnTe 8.55 7.09 0.98 (0.27) 2.50 1.88 1.75 1.91 2.04 2.02 2.26
CdSw 6.11 4.91 1.19 2.86 2.18 2.45 2.60 2.84 2.38 2.49
CdSew 7.53 5.64 0.55 (0.12) 2.11 1.51 1.50 1.81 2.05 1.54 1.75
CdTe 8.37 6.88 0.48 (0.28) 1.87 1.27 1.21 1.27 1.40 1.34 1.43
MgS 5.30 4.81 2.78 4.50 3.78 4.17 4.24 4.36 4.48 4.5
MgO 3.12 2.66 4.73 7.20 6.46 8.37 8.20 8.70 8.01 7.83
LiF 2.02 1.77 9.23 12.29 11.55 16.11 15.71 16.45 15.13 14.20
NaCl 2.44 2.24 5.08 7.15 6.44 8.83 8.56 8.84 8.43 8.5
ME −1.61 0.18 −0.51 −0.06 −0.07 0.29 0.01
MAE 1.61 0.53 0.54 0.28 0.18 0.32 0.15
MARE [%] 51 22 13 10 5 9 6

aThe first two columns show the dielectric constants calculated from PBE and sc-DSH. The following columns are band gaps from different
methods. The last three rows show the mean error (ME), mean absolute error (MAE), and mean absolute relative error (MARE) of the results from
different methods with respect to the experimental data.61,64 For systems with heavy elements, the correction due to spin−orbit coupling has been
taken into account by subtracting the SOC correction calculated by PBE (the value in parentheses). For comparison, we also show the results from
PBE-based GW0 with the numerically accurate LAPW+HLOs basis.63

Figure 2. Calculated band gaps of sp semiconductors from PBE,
DSH0, and sc-DSH are plotted against corresponding experimental
values.
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+189%. The failure of PBE0 for NGSs can be attributed to its
fixed hybrid coefficient of 1/4, considering that the dielectric
constant of the narrow gap of a NGS is typically greater than
10. On the other hand, considering dielectric screening alone is
not enough to obtain an accurate description of the band gap of
a NGS, as clearly indicated by the results from the DDH
approach. In the case of sp semiconductors, we have shown
above that the DDH approach describes typical medium- and
wide-gap semiconductors very well, consistent with the findings
in ref 26. However, here for NGSs, DDH shows a systematic
underestimation of band gaps, and the overall MARE is as large
as 65%. In addition, we note that for some NGS systems the
iteration in the DDH approach can have difficulty in reaching
convergence. For example, the calculated dielectric constant in
InAs jumps in a zigzag pattern, as shown in Figure 3 (left
panel), and does not converge even after 15 iterations, in strong
contrast to the situations in moderate- or wide-gap systems,
where typically three or four iterations are enough to reach
convergence. The convergence difficulty can be attributed to
the fact that in a wide range of dielectric constants (about 12−
24) the system is always metallic. Although the dielectric
constants are different in iterations, the electronic band
structures are, to a large extent, similar. We find that even if
one takes the smallest dielectric constant (i.e., the maximum
exact exchange ratio) among the iterations, it is still impossible

to open a gap in InAs and InSb, which clearly indicates the
drawback of the DDH approach for NGS systems.
Furthermore, it is noteworthy that a metallic system often
requires a finer k-mesh and a larger smearing value to get a
convergent dielectric tensor. We test a series of k-mesh and find
that for DDH, which describes InAs and InSb as metallic, more
than 16 × 16 × 16 k points are needed, which inevitably leads
to a great increase in computational cost. To make a rough
estimation, the computational load is about 20 times larger,
compared with a typical k-mesh of 6 × 6 × 6.
In contrast to DDH, the DSH approach is still effective for

NGS systems, with a MAE of 0.08 eV and a MARE of 28%,
which is already very close to the error bars of typical
experimentally measured band gaps. Furthermore, DSH does
not suffer from the convergence difficulty as DDH (the
convergence can be readily reached after four iterations for
InAs, as shown in Figure 3 (right panel)). The different
performances of the DDH and DSH approaches clearly indicate
that for NGS systems it is crucial to take into account both the
dielectric screening and metallic screening.
Table 2 also shows the results from HSE06. We can see that

HSE06 works as well as DSH for the selected NGS systems.
Physically, the HSE functional also takes the form in which
both dielectric and metallic screening are taken into account,
but they are considered with fixed screening parameters: the

Table 2. Band Gap of NGSs from Different Functionalsa

system PBE (SOC) PBE0 HSE06 DDH sc-DSH expt

Ge 0.00 (0.06) 1.37 0.75 0.29 0.77 0.74
GeTe 0.41 (0.09) 1.22 0.66 0.47 0.48 0.61
SnSe 0.50 (0.03) 1.53 0.95 0.68 0.89 0.9
GaSb −0.06 (0.23) 1.30 0.73 0.27 0.85 0.81
InN 0.00 (0.00) 1.41 0.77 0.73 0.84 0.7−0.9
InAs −0.11 (0.11) 1.01 0.43 −0.11 0.55 0.417
InSb −0.23 (0.23) 0.88 0.31 −0.22 0.47 0.235
PbS −0.06 (0.38) 1.01 0.42 0.26 0.32 0.29
PbSe −0.17 (0.42) 0.86 0.29 0.01 0.22 0.15
PbTe −0.04 (0.74) 0.91 0.34 0.09 0.07 0.19
ME [eV] −0.48 0.63 0.05 −0.26 0.03
MAE [eV] 0.48 0.63 0.07 0.26 0.08
MARE [%] 116 189 28 65 28

aThe last three rows show the mean error (ME), mean absolute error (MAE), and mean absolute relative error (MARE) of results from different
methods with respect to the experimental data.61,64,68 Particularly, the experimental band gap of InN is from refs 69−71, and GeTe is from refs 72
and 73. For systems with heavy elements, the result has taken the SOC into account by subtracting the correction by PBE calculation (the value in
parentheses; some values are taken from ref 74 and 75). The dielectric constants of InN, InAs, and InSb are calculated by the RPA method without
the local field effect.

Figure 3. Calculated dielectric constant and band gap (with the SOC effect considered) of InAs plotted as a function of iteration steps by using the
DDH (left) and DSH (right) approaches, respectively. A fine k-mesh of 16 × 16 × 16 is used in the DDH calculations, but a relatively small k-mesh
of 6 × 6 × 6 is used for the DSH calculation.
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dielectric screening is considered by using the same fraction of
the exact exchange as PBE0 (i.e., αHF = 0.25), and the metallic
screening is considered by using a range-separation parameter μ
= 0.2 Å−1 that is determined by empirical fitting of
thermochemical data.15 On the basis of the preceding
discussion, we can see that the value of αHF = 0.25 is far
from physical based on the calculated dielectric constants, but
apparently due to a right combination of the values of αHF and
μ, the band gaps of many NGSs and moderate-gap semi-
conductors can be accurately predicted. The success of HSE06
compared to the failure of PBE0 clearly indicates the
importance of considering the metallic screening for accurate
description of band structure of NGSs. On the other hand, with
system-independent screening parameters, we can not expect
the HSE06 to be universally accurate for systems of different
nature, as clearly indicated by the significant errors of HSE06
for the description of the band gaps of wide-gap semi-
conductors and insulators shown in Table 1.
To summarize, we have systematically explored the perform-

ances of a new range-separated hybrid functional, which takes
both dielectric and metallic screenings into account with
system-dependent and nonempirically determined screening
parameters, for theoretical prediction of the band gaps of
semiconductors and insulators with a wide range of band gap
values. We found that all insulating systems with wide,
moderate, or narrow band gaps can be well described by this
DSH functional. In particular, for sp systems with moderate or
wide band gaps, we find that both the one-shot (with PBE as
the starting point) and self-consistent DSH can reproduce
experimental results very well with a mean absolute relative
error less than 10%, an accuracy that is comparable to
numerically converged all-electron GW0@PBE.63 We have also
investigated the performances of the self-consistent DDH
approach26 and found that DDH and DSH perform similarly in
describing the electronic band structure of typical sp semi-
conductors with moderate and wide gaps. For NGSs, the DDH
approach tends to significantly underestimate the band gaps
and in some cases has difficulty in reaching convergence during
iterative determination of dielectric constants. PBE0, which has
a fixed fraction of the HF exact exchange, leads to severely
overestimated band gaps. In contrast, the DSH still works very
well, not only in terms of good convergence behavior but also
in terms of quantitatively good agreement with experimental
results. The overall remarkable performances of the DSH
approach clearly indicate the importance of considering two
limiting screening mechanisms, the global dielectric (insulator)
screening, embodied in the scaling of the Coulomb interaction
by 1/ϵM, and the short-range metallic screening, represented in
the Yukawa potential, for accurate description of the electronic
band structure of materials of different nature.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: jianghchem@pku.edu.cn.

ORCID

Min-Ye Zhang: 0000-0002-7877-1994
Hong Jiang: 0000-0003-3187-2023
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank Dr. Joachim Paier for helpful discussion. This work is
partly supported by the National Natural Science Foundation
of China (Project Numbers 21673005 and 21621061) and the
National Key Research and Development Program of China
(No. 2016YFB0701100). We acknowledge the High-Perform-
ance Computing Platform of Peking University and Tianjin
Supercomputer Center for providing computing facility.

■ REFERENCES
(1) Martin, R. M. Electronic Structure: Basic Theory and Practical
Methods; Cambridge University Press: Cambridge, U.K., 2004.
(2) Carter, E. A. Challenges in Modeling Materials Properties
without Experimental Input. Science 2008, 321, 800−803.
(3) Jain, A.; Shin, Y.; Persson, K. A. Computational Predictions of
Energy Materials Using Density Functional Theory. Nat. Rev. Mater.
2016, 1, 15004.
(4) Aryasetiawan, F.; Gunnarsson, O. The GW Method. Rep. Prog.
Phys. 1998, 61, 237−312.
(5) Perdew, J. P.; Yang, W.; Burke, K.; Yang, Z.; Gross, E. K. U.;
Scheffler, M.; Scuseria, G. E.; Henderson, T. M.; Zhang, I. Y.;
Ruzsinszky, A.; et al. Understanding Band Gaps of Solids in
Generalized Kohn-Sham Theory. Proc. Natl. Acad. Sci. U. S. A. 2017,
114, 2801−2806.
(6) Rinke, P.; Janotti, A.; Scheffler, M.; Van de Walle, C. G. Defect
Formation Energies without the Band-Gap Problem: Combining
Density-Functional Theory and the GW Approach for the Silicon Self-
Interstitial. Phys. Rev. Lett. 2009, 102, 026402.
(7) Toroker, M. C.; Kanan, D. K.; Alidoust, N.; Isseroff, L. Y.; Liao,
P.; Carter, E. A. First Principles Scheme to Evaluate Band Edge
Positions in Potential Transition Metal Oxide Photocatalysts and
Photoelectrodes. Phys. Chem. Chem. Phys. 2011, 13, 16644−16654.
(8) Jiang, H.; Shen, Y.-C. Ionization Potentials of Semiconductors
from First-Principles. J. Chem. Phys. 2013, 139, 164114.
(9) Chen, W.; Pasquarello, A. Band-Edge Positions in GW: Effects of
Starting Point and Self-consistency. Phys. Rev. B: Condens. Matter
Mater. Phys. 2014, 90, 165133.
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