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Which Has Better Visual Quality: The Clear Blue
Sky or a Blurry Animal?

Dingquan Li , Member, IEEE, Tingting Jiang , Member, IEEE, Weisi Lin , Fellow, IEEE,
and Ming Jiang, Senior Member, IEEE

Abstract—Image content variation is a typical and challenging
problem in no-reference image-quality assessment (NR-IQA). This
work pays special attention to the impact of image content
variation on NR-IQA methods. To better analyze this impact,
we focus on blur-dominated distortions to exclude the impacts of
distortion-type variations. We empirically show that current NR-
IQA methods are inconsistent with human visual perception when
predicting the relative quality of image pairs with different image
contents. In view of deep semantic features of pretrained image
classification neural networks always containing discriminative
image content information, we put forward a new NR-IQA
method based on semantic feature aggregation (SFA) to alleviate
the impact of image content variation. Specifically, instead of
resizing the image, we first crop multiple overlapping patches
over the entire distorted image to avoid introducing geometric
deformations. Then, according to an adaptive layer selection
procedure, we extract deep semantic features by leveraging the
power of a pretrained image classification model for its inherent
content-aware property. After that, the local patch features are
aggregated using several statistical structures. Finally, a linear
regression model is trained for mapping the aggregated global
features to image-quality scores. The proposed method, SFA, is
compared with nine representative blur-specific NR-IQA methods,
two general-purpose NR-IQA methods, and two extra full-
reference IQA methods on Gaussian blur images (with and without
Gaussian noise/JPEG compression) and realistic blur images from
multiple databases, including LIVE, TID2008, TID2013, MLIVE1,
MLIVE2, BID, and CLIVE. Experimental results show that SFA is
superior to the state-of-the-art NR methods on all seven databases.
It is also verified that deep semantic features play a crucial role
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in addressing image content variation, and this provides a new
perspective for NR-IQA.

Index Terms—Deep semantic features, image content variation,
no-reference image quality assessment, realistic blur, statistical
aggregation.

I. INTRODUCTION

D IGITAL images can undergo various distortions during
image acquisition, compression, transmission, display,

etc. To monitor and improve the image quality, image quality
assessment (IQA) has become a fundamental aspect of modern
multimedia systems. Since humans are the end-users of most
multimedia devices, the most accurate method to evaluate the
image quality is achieved using subjective ratings. However,
subjective evaluation is difficult to conduct in real-time appli-
cations for the handicaps of its inconvenience, high price, and
inefficiency. This leads to the need for efficient and effective ob-
jective IQA methods that can automatically give image quality
predictions. Objective IQA can be divided into full-reference
IQA (FR-IQA) [1]–[4], reduced-reference IQA (RR-IQA)
[5]–[7] and no-reference IQA (NR-IQA) [8]–[12]. Because
reference information needed by FR/RR methods is often un-
available, FR- and RR-IQA methods are inapplicable in most
practical applications. The absence of the reference information
calls for NR-IQA methods, which are more applicable but also
more difficult.

Humans can perceive image quality among various image
contents; however, image content variation is a common and
challenging problem in NR-IQA. For example, humans rate
higher quality for the clear blur sky instead of the blurry ani-
mal, while most current objective IQA methods wrongly predict
the relationship. In this work, we focus on blur-dominated dis-
tortions for analyzing the impact of image content variation
on NR-IQA methods since most images captured by users in
the real world suffer from out-of-focus blur or motion blur.
Objective NR-IQA methods are expected to be consistent with
subjective ratings. However, we find that current NR-IQA meth-
ods show many inconsistencies when predicting the relative
quality of image pairs with different image contents. First, we
show that objective NR-IQA methods have inconsistent cases
whereby they predict quite different objective quality for image
pairs with indiscriminate subjective quality ratings but differ-
ent image contents. Based on the variation in objective scores,
we define a criterion to quantitatively measure the impact of
image content variation for quality-indiscriminate images. Sec-
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ond, NR-IQA methods also have inconsistent cases whereby
they give inverse relative quality predictions for image pairs
with discriminable subjective quality ratings but different image
contents. To explore the impact of image content variation on
NR-IQA in this scenario, we construct a quality-discriminable
image pair dataset, containing in total 22,792 image pairs with
quite discriminable subjective qualities. According to the anal-
ysis on both quality-indiscriminate image pairs and quality-
discriminable image pairs, we experimentally prove that current
NR-IQA methods are indeed inconsistent with human visual
perception due to image content variation.

Image-content-aware features can help to alleviate the im-
pact of image content variation on NR-IQA models. Therefore,
in this work, we address the above problem by resorting to deep
semantic features extracted from an off-the-shelf deep convolu-
tional neural network (DCNN) model, which is pre-trained for
image classification tasks. However, it remains an open question
of how to better adopt a pre-trained DCNN on NR-IQA. Herein,
several key factors need to be taken into considerations. First, we
have to choose a suitable format of image representation since a
fixed size input is required by pre-trained DCNN models (e.g.,
ResNet-50 [13])]. To both cover the entire image and avoid in-
troducing geometric deformation, we use the multi-patch repre-
sentation for an image. Meanwhile, different from image classi-
fication, IQA focuses on human perception of image distortions.
To extract powerful and effective features that are sensitive to
content distortions, we should decide which pre-trained DCNN
model to use and from which layer to extract features. We empir-
ically choose the pre-trained ResNet-50 to extract the semantic
features. In addition, to obtain fixed-dimension features, we use
an adaptive layer selection procedure to output suitable feature
maps and apply global average pooling to the maps. Last, since
we extract multiple local patch features from an image, global
information will be somewhat weakened or even disregarded,
which is contradictory with the IQA task. To address this issue,
effective aggregation mechanisms are desired. A simple strat-
egy is to use the mean feature vector. However, this loses other
important characteristics of the feature set (e.g., the standard
deviation). Therefore, we adopt three statistical structures for
feature aggregation: mean&std aggregation, quantile aggrega-
tion, and moment aggregation. Due to the high dimensionality
of the aggregated global features, we ultimately train a linear
regression model for mapping the aggregated global features to
image quality scores.

We conduct experiments on not only simulated Gaussian
blur images (from LIVE [14], TID2008 [15] and TID2013
[16]) but also Gaussian blur images with Gaussian noise or
JPEG compression (from MLIVE1 and MLIVE2 [17]) and
realistic blur images (from BID [18] and CLIVE [19]). The
proposed Semantic-Feature-Aggregation-based method, SFA,
is compared with nine blur-specific NR-IQA methods, two
general-purpose NR-IQA methods and two extra FR-IQA meth-
ods. Our experiments show that SFA is superior to existing
NR-IQA methods on two realistic image databases and five
simulated image databases.

The main contributions of this work are as follows:
1) An analysis of the impact of image content variation on

NR-IQA methods verifies that deep semantic features can

alleviate the impact of image content variation. The deep
semantic features indeed play a key role in predicting
image quality among various image contents. This intro-
duces a new viewpoint for designing NR-IQA methods in
terms of the semantic aspect.

2) A novel NR-IQA framework is proposed based on seman-
tic feature aggregation, where a pre-trained DCNN model
with an adaptive layer selection procedure is used as the
feature extractor, and some statistical characteristics are
used for feature aggregation.

3) Experiments on seven databases (containing simulated
and realistic blur images) verified the superiority and gen-
eralization capability of the proposed method.

This paper extends our conference paper [20] with the follow-
ing distinctions made. 1) A major extension is that we design
new experiments, construct new datasets and define new quan-
titative criteria for analyzing the impact of image content vari-
ation. 2) A new adaptive layer selection procedure for feature
selection that can significantly improve our method’s perfor-
mance on simulated images is adopted. 3) More experiments
and analysis are performed, for which we provide a discussion
on realistic blur, report the results of statistical significance tests,
present test results on the Waterloo exploration database [21],
and summarize the computational efficiency.

II. RELATED WORKS

Image blur is a common distortion, and often occurs in the
following situations: (1) defocus, (2) relative motion (i.e., object
motion and camera shake), (3) imperfect imaging systems (such
as lens aberration), (4) atmospheric turbulences, and (5) image
post-processing techniques (e.g., denoising and compression)
[22]–[24]. In the blur-specific NR-IQA literature, researchers
have mainly considered Gaussian blur images. In this aspect,
image sharpness and image quality can be discussed as syn-
onyms. Simultaneously, image sharpness and image blurriness
can be used as antonyms. Therefore, in this section, we review
not only blur-specific NR-IQA methods but also methods for
sharpness/blurriness estimation. However, we should note that
sharpness is not always the antonym of blurriness. For example,
a clear blue sky (dominated by flat regions) can neither be con-
sidered sharp nor blurred. The same example also shows that
image sharpness does not equal image quality, i.e., a clear blue
sky is not sharp but has good quality.

Learning-free methods: Some methods use the blur properties
in the spatial domain, e.g., the edge spread [22], [23], [25] and
the smoothing effect [26]–[28], while other methods further use
the blur properties in the transform domains, e.g., reductions in
high-frequency components [29]–[31] and the loss of phase co-
herence [24], [32], [33]. Since blur makes edges spread, Marzil-
iano et al. [25] detect vertical edges and consider the average
edge width as a quality measure. The above method is further
enhanced using the concept of just noticeable blur (JNB) [22].
Noticing that blur is unlikely to be detected at an edge whose
width is negligible, Narvekar and Karam [23] measure the im-
age quality by the probability of edges whose widths are smaller
than the JNB width. Based on the smoothing effect of image
blur, Gu et al. [26] estimate the image quality using the energy
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differences and contrast differences in the autoregressive param-
eter space, while Bahrami and Kot [27], [28] consider modeling
the distribution of the total variation (TV) or the maximum local
variation (MLV). In the frequency domain, blur leads to the at-
tenuation of the high-frequency energy, which can be a cue for
quality estimation [29]. Vu and Chandler [30] measure image
sharpness by considering the steepness of the local magnitude
spectrum and the local total variation. In addition, Li et al. [31]
evaluate the image quality based on the energy of the non-DC
Tchebichef moments [34] of gradient blocks. It is shown that
step edges imply strong local phase coherence (LPC) structures
across scales and space, which can be destroyed by blur [32].
This suggests that the strength of the LPC near edges and lines
can be used as a sharpness measure [24]. In addition, Leclaire
and Moisan [33] define the global phase coherence (GPC) of an
image to relate the image quality to the loss of image regularity
when its phase information is disturbed.

Learning-based methods: These methods mainly utilize two
steps: feature extraction and quality prediction. The most im-
portant aspect is to extract features that are quality relevant.
Handcrafted features are generally extracted from nature scene
statistics (NSS) models. They can also be obtained by some
low-level image features (e.g., contrast and brightness). It is as-
sumed that distortions alter the statistical properties of natural
scenes; therefore, Wang et al. [35] estimate the image quality
by applying extreme learning machine [36] to the statistics of a
gradient distribution model. Ciancio et al. [18] fuse features of
traditional methods and low-level features using a neural net-
work for quality assessment. Li et al. [37] utilize a support vec-
tor regression (SVR) model to map the features extracted from
gradient similarity, singular value similarity and DCT domain
entropies. Instead of handcrafted features, powerful quality rele-
vant features can be learnt directly by machine learning methods.
Having observed that over-complete dictionaries learned from
natural images can capture edge patterns, Li et al. [38] learn an
over-complete dictionary and use it to construct a sparse coding
model for the image blocks; then, they estimate image quality
based on the block energy normalized by the block variance.
Lu et al. [39] learn structure-related features from the sparse
dictionary and map the learned features to quality scores using
SVR. Recently, deep learning techniques have been applied for
general-purpose IQA [40]–[45]. Yu et al. [46] attempt to apply
deep learning architectures to blur image quality assessment.
An image pre-processed using the local contrast normalization
is passed through a convolutional layer, a down-sampling layer
and a fully connected layer to extract image features; then, the
features are mapped to an image quality score by regression.

Other blur-relevant research: In addition to the quality as-
sessment of blur images, other blur-relevant research, includ-
ing local blur detection [47]–[49], deblurring [50]–[53], and
blur manipulation [54], has been performed. Previous stud-
ies often considered extracting features from the edge models,
power spectral slopes, and image gradient statistics [47], [50],
[54]. However, with the explosive development of deep learn-
ing, increasingly more blur-relevant research is being addressed
by convolutional neural networks, recurrent neural networks,
and generative adversarial networks [48], [49], [51]–[53]. The

Fig. 1. A quality-indiscriminate image pair set with six images from TID2013
[16]. Their quality scores given by IQA methods are shown in sub-captions.

quality assessment of blur images can guide such related re-
search. For example, the quality-aware loss can be integrated
into deblurring algorithms. But at the same time, probing into
these blur-relevant research can also provide insight for quality
assessment of blur images. For example, the overall blur degree
can be obtained by pooling the local blur map [48].

III. IMPACT OF IMAGE CONTENT VARIATION

Humans can perceive image quality differences among var-
ious image contents. Therefore, it is interesting to explore the
impact of image content variation on NR-IQA methods. A rea-
sonable NR-IQA method should be consistent with subjective
ratings; at the least, it should give consistent relative quality
predictions of image pairs with different image contents.

A. Quality-Indiscriminate Image Pairs

A quality-indiscriminate image pair indicates an im-
age pair with indiscriminate subjective quality but differ-
ent image contents. We extend quality-indiscriminate image
pairs to quality-indiscriminate image sets since a quality-
indiscriminate image set containing N images can generate
N (N −1)

2 quality-indiscriminate image pairs. Fig. 1 shows a
quality-indiscriminate image set with six images, where the
sub-captions show the mean opinion score (MOS), predicted
scores given by two FR-IQA methods (IWSSIM [2], VSI [3]),
four traditional blur-specific methods (MDWE [25] based on
the edge spread, MLV [27] based on the smoothing effect,
FISHbb [29] based on a reduction in high-frequency energy,
LPC [24] based on a loss of phase coherence), and two general-
purpose NR-IQA methods (BRISQUE [8], ILNIQE [9]). Objec-
tive IQA methods should give similar objective quality scores
on a quality-indiscriminate image set. However, this is not the
case due to the impact of image content variation. IWSSIM is
a structure-based method, and VSI is a saliency-based method;
they all overestimate the image quality of Fig. 1(a), (d), and
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Fig. 2. The mean and standard deviation values of NSD over all datasets {S1 , S2 , . . . , S379} constructed from TID2013. The mean NSD increases from left
to right, which means that the performance drops from left to right. A smaller standard deviation of NSD indicates a more reliable reported mean NSD. Note that
the learning-based methods are trained on LIVE.

(f), which contain abundant textures. MDWE overestimates the
image quality of Fig. 1(a), which contains sharp edges, and it
underestimates the image quality of Fig. 1(e), which contains
smooth edges. The maximum local variations in Fig. 1(d) and
(f) are large, which cause the over-estimation of MLV on these
two images. Fig. 1(b), 1(c), and (e) contain many flat regions,
mainly consisting of low-frequency components. As a result,
the image quality is underestimated by FISHbb in the three im-
ages. Conversely, FISHbb overestimates the quality of Fig. 1(a)
and (f) since there is a substantial amount of high-frequency
energy in the image structures. Strong edges correspond to high
LPC strength, while smooth edges result in low LPC strength,
which explains the results that LPC overestimates the quality
of Fig. 1(a) and underestimates the quality of Fig. 1(c). As the
above methods, BRISQUE and ILNIQE also overestimate the
quality of Fig. 1(d) and (f) due to the impact of image content
variation.

To statistically analyze the impact of image content variation
on IQA methods for quality-indiscriminate image sets, we first
introduce some assumptions. Given a set S containing images
with indiscriminate subjective quality, we assume the follow-
ing: (i) The impact of image content variation is larger when
the standard deviation (std) of the objective scores is larger. (ii)
The impact of image content variation on a method is noticeable
when the standard deviation of the objective scores is more than
double the standard deviation of the subjective scores. (iii) To en-
sure the comparability among datasets with different subjective
score ranges, the standard deviation should be normalized. In the
extreme case that the objective scores of an infinite number of
images from a quality-indiscriminate image set are uniformly
distributed in the subjective score range [0, R], the impact of
image content variation is expected to be very strong, and the
standard deviation of objective scores in this case (R/2

√
3) can

be used as a normalization factor. Based on the above assump-
tions, we quantitatively measure the impact of image content
variation by the normalized standard deviation (NSD):

NSD =
[stdo(S) − 2stds(S)]+

R/2
√

3
(1)

Fig. 3. The three images are from BID [18]. The subjective quality of
(a) is better than the subjective quality of (b)/(c). The four traditional meth-
ods (MDWE [25], MLV [27], FISHbb [29], and LPC [24]) predict that (a) is
worse than (b)/(c), which is inconsistent with human visual perception.

where stdo(S) and stds(S) are the standard deviation of the
mapped objective scores and the subjective scores on the dataset
S. [x]+ represents the positive part of x. The impact is smaller
when NSD is closer to zero.

We construct the quality-indiscriminate image set S from
TID2013 [16]. The set S is expected to meet the following two
requirements: (1) Since most of the subjective ratings for an
image are in the range of [MOS-std, MOS+std], it suggests that
an image pair is supposed to be reliably indiscriminate in terms
of the subjective quality if their absolute MOS difference is
smaller than the std of the MOS. Specifically, to guarantee the
reliability of the quality-indiscriminate image sets, the extreme
MOS difference in the set S is expected to be smaller than the
average std of MOS (σ = 0.1200 in TID2013). (2) To ensure the
stability, |S|, the size of the set S, is expected to be at least N0 =
4. In the range of subjective scores, we randomly select 1000
windows with a length equal to σ. Then, we judge whether the
images whose subjective scores in the selected window can meet
requirement (2). Finally, we obtain 379 quality-indiscriminate
image sets {S1 ,S2 , . . . ,S379} that satisfy the two requirements.
In Fig. 2, we report the mean and standard deviation values
of NSD over all datasets. The image content variation has the
smallest impact on the two FR-IQA methods, VSI and IWSSIM,
in terms of the defined criterion, which is consistent with the fact
that FR-IQA methods use both reference and distorted images.
The NSD values of other NR-IQA methods are almost two-
times larger than the NSD values of FR-IQA methods. This
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Fig. 4. The thumbnail sample images of the Content-Variation-Impact-Quality dataset (CVIQ). Most methods have many failure cases on predicting the relative
quality, i.e., predicting that the quality of images on the left side worse than images on the right side. This is due to the impact of image content variation.

means that existing NR-IQA methods are strongly affected by
image content variation.

B. Quality-Discriminable Image Pairs

As described in the previous subsection, the NR-IQA meth-
ods may give quite different objective scores for quality-
indiscriminate image sets due to image content variation. More-
over, due to this impact, the NR-IQA methods may give inverse
objective scores to quality-discriminable image pairs, which
have quite discriminable subjective quality but different image
contents. In Fig. 3, the image quality of the clear blue sky is
worse than the image quality of the blurry monkey/mouse ac-
cording to the prediction of traditional methods, which is counter
to human visual perception. This can be explained by the fact
that traditional methods are mainly based on low-level features,
which overlook the impact of image content variation.

To quantitatively measure this impact on different NR-
IQA methods, we construct a Content-Variation-Impact-Quality
dataset (CVIQ) from BID. According to [55], an image pair is
supposed to be quality-discriminable if their absolute MOS dif-
ference is larger than 2 std of the MOS. The average std of
MOS for all images on BID is 0.8309. Therefore, choosing one
image with MOS > 4 and another image with MOS < 2 to
form an image pair is a simple procedure for ensuring that the
image pair will be reliably discriminable in terms of subjective
quality. Thumbnail sample images of CVIQ are shown in Fig. 4,
which contains images with intrinsic flat regions, blurry regions,
sharp structures and blurry structures. Overall, CVIQ consists
of 148 images of high quality (MOS > 4, e.g., the left side of
Fig. 4) and 154 blur images of low quality (MOS < 2, e.g., the
right side of Fig. 4). By selecting one image with low quality
and one image with high quality, we obtain altogether 22,792
(154 × 148) quality-discriminable image pairs. Table I shows
the accuracy of predicting the relative quality on the 22,792
image pairs, where the highest accuracy is indicated in bold.
Note that the learning-based methods are trained on CLIVE.
The best NR-IQA method (excluding the method proposed in
our paper), ILNIQE, only achieves an 85.01% accuracy, which
means that 3,417 quality-discriminable image pairs are given

TABLE I
THE ACCURACY OF PREDICTING THE RELATIVE QUALITY OF IMAGE PAIRS IN

CVIQ, WHERE THE HIGHEST ACCURACY IS IN BOLD

incorrect relative predictions by ILNIQE. Moreover, over
11,000 quality-discriminable image pairs are improperly pre-
dicted by ARISMc. The results show that existing NR-IQA
methods suffer a lot from the image content variation.

IV. A NOVEL NR-IQA METHOD BASED ON

SEMANTIC FEATURE AGGREGATION

Existing methods overlook the impact of image content vari-
ation, thereby causing inconsistent predictions on image pairs.
Image-content-aware features can help to alleviate the impact of
image content variation. Therefore, in this work, we propose a
new NR-IQA method that facilitates image-content-aware fea-
tures with effective aggregation mechanisms. The overall frame-
work is shown in Fig. 5, and includes four key components: im-
age representation, feature extraction, feature aggregation, and
quality prediction.

A. Image Representation

To perform the preprocessing step and forward propagation,
the pre-trained DCNN models (e.g., ResNet-50 [13]) require a
fixed-size input. Therefore, images should be cropped or resized
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Fig. 5. [Best viewed in color.] The framework of the proposed method, which includes four main steps: multi-patch representation of an image, feature extraction
by a pre-trained DCNN model with an adaptive layer selection procedure (in this paper, the ‘res3d’, ‘res4f’, and ‘res5c’ layers of ResNet-50 [13] are considered),
feature aggregation by three different statistical structures, and quality prediction by a partial least square regression (PLSR) model with p = 10 components.

to a fixed size. Resizing is not a good choice since this can intro-
duce geometric deformation, which can alter the image quality.
Meanwhile, cropping the central patch alone is not sufficient to
cover most pixels of a large image. Therefore, to avoid these
two issues, we empirically consider using multi-patch represen-
tation, where we represent an image using multiple overlapping
patches (with a stride equaling half the patch size). In this way,
it not only covers the entire image but also avoids introducing
the unwanted geometric deformation. We have experimentally
verified in the conference paper [20] that the multi-patch repre-
sentation performs well for NR-IQA.

B. Feature Extraction

We represent the given an image I with a set of multiple
overlapping patches {p1 , . . . ,pn}, where n is the total number
of image patches. Then, these patches are fed into a pre-trained
DCNN model to extract the features. For each patch pk , a feature
is extracted and denoted by

dk = GAP(DCNN(pk ;L, θ)), k = 1, . . . , n. (2)

where L indicates from which layer we extract the feature, θ is
the model parameter, and GAP means a global average pooling
operation that pools the feature maps.

According to comparison results in our conference paper [20],
we choose ResNet-50 as the pre-trained DCNN model. As indi-
cated in the conference paper, when there is only a small set of
images with different image contents, the role of deeper features
is weakened, and the impact of shallower features is enhanced.
Therefore, we adaptively extract suitable semantic feature maps
from its ‘res3d’, ‘res4f’ or ‘res5c’ (lower to higher) layer based
on the five-fold cross validation on training data.

C. Feature Aggregation

Since we extract features from local patches, one of the chal-
lenges in applying pre-train DCNN to NR-IQA is that global
information will be somewhat weakened or even disregarded.
We need effective mechanisms to aggregate the extracted local
patch features into a single global feature. A straightforward

strategy to do this is to concatenate all n features, i.e.,

fconcat = d1 ⊕ · · · ⊕ dk ⊕ · · · ⊕ dn (3)

where ⊕ indicates a concatenation operator.
However, the above concatenation will result in a very high

dimensionality of the feature space. Moreover, the dimensions
of this concatenated feature vector depend on the number of
image patches, which may be differ among the images with
various resolutions. To avoid this, we can take the mean feature
vector, which is

fmean = (m1 , . . . ,mi, . . . ,ml)
T ,

mi =
∑n

k=1 dki

n
, i = 1, . . . , l. (4)

where l is the dimension of dk , dki is the i-th element of dk ,
and T indicates a transposed operator.

The mean aggregation structure may lose important charac-
teristics (such as the standard deviation in each dimension) of
the local patch features, which can harm the final prediction.
Therefore, to better deliver the information, we adopt three dif-
ferent statistical structures for feature aggregation: mean&std
aggregation, quantile aggregation, and moment aggregation.

Mean&std aggregation: Noticing that the mean cannot reflect
the variations, mean and standard deviation are jointly consid-
ered in different tasks [56]–[58]. Here, we also consider these
two statistics for the same concern, and the 1st aggregated fea-
ture f1 can be calculated as

f1 = fmean ⊕ fstd

fstd =

⎛

⎝

√∑n
k=1(dk1 − m1)2

n − 1
, . . . ,

√∑n
k=1(dkl − ml)2

n − 1

⎞

⎠

T

(5)

where mi(i = 1, . . . , l) indicates the i-th element of fmean.
Quantile aggregation: Lu et al. [56] proposed a sorting layer

to aggregate the features of several random patches. However,
the sorting layer cannot handle images with different num-
bers of patches. To address this situation, we propose quantile
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Fig. 6. [Best viewed in color.] An illustration of the three statistical structures used for feature aggregation. The inputs are n = 5 features {d1 , d2 , d3 , d4 , d5},
and the feature dimension is l = 3. (q0 , q1 , q2 , q3 , q4 ) indicates the 5 quartiles, and Mr

r equals the central moment of order r (r = 2, 3, 4). For clarity, some
links between patch features and statistical functions are omitted.

aggregation since quantiles are important order statistics for
describing a distribution. In this work, we choose the widely
used quartiles.1 The zeroth to fourth quartiles of (d1i , . . . , dni)
are denoted as d

{0}
i , d

{1}
i , d

{2}
i , d

{3}
i , d

{4}
i , i = 1, . . . , l. Thus, the

2nd aggregated feature f2 can be obtained by

f2 = q0 ⊕ q1 ⊕ q2 ⊕ q3 ⊕ q4

qj =
(
d
{j}
1 , . . . , d

{j}
l

)T

, j = 0,1, 2, 3, 4. (6)

Moment aggregation: Moments also play a key role in char-
acterizing a distribution.2 We know that the mean and standard
variation can represent Gaussian distributions, but real distribu-
tions need more statistics (e.g., the generalized Gaussian dis-
tribution (GGD) needs the mean, standard variation and one
additional shape parameter). Thus, we also consider the higher
order moments in our work. To achieve a balance between the
need for more information and the dimensionality reduction of
the feature space, we further consider the r-th root of the cen-
tral moment of order r (r = 3, 4) and obtain the 3rd aggregated
feature f3 by

f3 = fmean ⊕ M2 ⊕ M3 ⊕ M4

Mr =

(
r

√∑n
k=1(dk1 − m1)r

n
, . . . ,

r

√∑n
k=1(dkl − ml)r

n

)T

(7)

The three aforementioned statistical aggregation structures
can result in 2l-, 5l-, and 4l-dimensional feature vectors. An
illustration of the three aggregation structures is shown in

1The min, median and max are the zeroth, second, and fourth quartiles,
respectively.

2The mean is actually the first-order origin moment, and the standard variation
is actually the square root of the second-order central moment.

Fig. 6, where n = 5, l = 3. The effectiveness of the three statis-
tical aggregation structures has been verified in our conference
paper [20].

D. Quality Prediction

Using statistical structures for feature aggregation, we de-
crease the dimensionality of the feature space (nl → 2l, 5l, 4l).
In addition, we make the dimensions independent of the number
of patches. However, l is usually very large in the pre-trained
DCNN model. The feature dimensions remain substantially
larger than the size of the database. An effective and efficient
regression model for quality prediction is desired. Specifically,
in this work, we adopt a simple linear regression model, partial
least square regression (PLSR) [59], because of its low com-
plexity and remarkable capability to deal with high-dimensional
data. PLSR first reduces the aggregated features to p uncorre-
lated latent components, where p is the only hyper-parameter in
PLSR. Then, the least square regression is performed on these
components. p is set globally to 10 for simplicity. To take ad-
vantage of ensemble learning, the quality prediction is given by
the weighted average of the scores predicted by the three PLSR
models.

E. Deep Semantic Features for NR-IQA: Aware of
Image Content

The deep semantic features are extracted from the image clas-
sification DCNN models pre-trained on ImageNet. Therefore,
the deep semantic features contain crucial image content infor-
mation, i.e., they are aware of image content and expected to
help to overcome the issue of image content variation. We also
test the proposed NR-IQA method, SFA, in the two scenarios as
described in Section III, to see if deep semantic features indeed
alleviate the impact of image content variation.
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In Fig. 1, compared with existing NR-IQA methods, our
proposed method, SFA, shows the smallest difference (5.0062-
4.3259 = 0.6803) in the predictions among the six quality-
indiscriminate images. In addition, the image content variation
has the smallest impact on our method for quality-indiscriminate
images among the NR-IQA methods (see Fig. 2).

In Fig. 3, our SFA method predicts that (b)/(c) is worse than
(a), which is in accordance with subjective ratings. In Table I,
SFA achieves the best accuracy (96.87%, with 10+% gains over
the second and third best methods, ILNIQE and FISHbb), which
means that our semantic-feature-aggregation-based method can
reduce the impact of image content variation on relative quality
predictions.

These results verify the effectiveness of deep semantic fea-
tures for addressing image content variation in NR-IQA, and
they provide a new perspective for NR-IQA in terms of the
semantic aspect.

V. EXPERIMENTAL RESULTS AND ANALYSIS

We first describe the experimental settings. Then, the per-
formance comparison of our method SFA with 9 represen-
tative blur-specific NR-IQA methods, 2 general-purpose NR-
IQA methods and 2 extra FR-IQA methods is conducted on
Gaussian blur images (without and with Gaussian noise/JPEG
compression) and realistic blur images from multiple databases.
Moreover, we conduct a statistical significance test to determine
whether the comparison results are significant. Then, we verify
the performance on the Waterloo exploration database [21] and
generalization capability of SFA. After that, the contribution
of the adaptive layer selection procedure is shown. Finally, the
computational efficiency of each method is reported.

A. Experimental Settings

Compared methods: We choose 9 representative blur-specific
NR-IQA methods, 2 general-purpose NR-IQA methods and 2
extra FR-IQA methods for comparison. The nine NR methods
are MDWE [25], MLV [27], ARISMc [26], FISHbb [29], LPC
[24], BIBLE [31], SPARISH [38], RISE [37], and Yu’s CNN
[46]. The two general-purpose NR-IQA methods are BRISQUE
[8] and ILNIQE [9]. The two FR methods are IWSSIM [2] and
VSI [3]. Note that the codes of these compared methods are
obtained from the original authors.

Basic evaluation criteria: For methods without training in
the quality prediction step, we refer to the suggestion of the
Video Quality Experts Group (VQEG) [60] and adopt a four-
parameter logistic function for mapping the objective score o to
the subjective score s:

f(o) =
τ1 − τ2

1 + e−
o −τ 3

τ 4

+ τ2 (8)

where τ1 to τ4 are fitting parameters initialized with τ1 =
max(s), τ2 = min(s), τ3 = mean(o), τ4 = std(o)/4.

Five basic criteria are chosen for the performance compari-
son:

1) Spearman’s Rank-order Correlation Coefficient (SROCC)
computes the prediction monotonicity and indicates how

well the relationship between subjective and objective
quality can be depicted by a monotonic function:

SROCC = 1 − 6
∑N

i=1 d2
i

N(N 2 − 1)
(9)

where N represents the size of the testing dataset and di

is the rank difference of the i-th image’s subjective and
objective scores.

2) Kendall’s rank-order correlation coefficient (KROCC) is
another prediction monotonicity criterion and indicates
the ordinal association between the subjective and objec-
tive quality:

KROCC =
2(Fc − Fd)
N(N − 1)

(10)

where Fc and Fd are the numbers of concordant and dis-
cordant pairs on the testing database.

3) Pearson’s linear correlation coefficient (PLCC) is a mea-
sure of the linear correlation between the subjective
scores and the mapped scores, which means the prediction
accuracy:

PLCC =
∑N

i=1(si − s̄)(fi − f̄)
√∑N

i=1(si − s̄)2
∑N

i=1(fi − f̄)2
(11)

where si and s̄ are the i-th subjective score and the mean
of all si , respectively, and fi and f̄ are the i-th mapped
objective score after the non-linear mapping and the mean
of all fi .

4) Root mean square error (RMSE) is another prediction
accuracy criterion that represents the distance between
the subjective scores and the mapped scores:

RMSE =

√
1
N

∑N

i=1
(si − fi)2 (12)

5) Outlier’s ratio (OR) is a prediction consistency measure
that gives the percentage of the mapped scores deviating
from the subjective scores in a “2 standard deviation”
sense:

OR =
∑N

i=1(|si − fi | > 2σi)
N

× 100% (13)

where σi is the i-th standard deviation of the raw subjec-
tive scores.

Image databases: We consider blur images from seven
databases: LIVE [14], TID2008 [15], TID2013 [16], MLIVE1
[17], MLIVE2 [17], BID [18] and CLIVE [19]. Table II provides
general information, covering the number of reference images
(# Reference image), number of blur images (# Blur image),
blur type, score type and score range.

1) Gaussian blur images from LIVE, TID2008, and TID2013
are obtained using Gaussian filters. There are 29, 25, and
25 reference images, respectively, and 5, 4, and 5 blur
kernels, respectively, for each reference image. These
kernels generate a total of 145, 100, and 125 blur images,
respectively.

2) Noisy blurred images in MLIVE1 simulate image acqui-
sition where images are out of focus and corrupted by
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TABLE II
GENERAL INFORMATION OF THE SEVEN DATABASES USED FOR THE COMPARATIVE EXPERIMENTS. “# REFERENCE IMAGE” MEANS THE NUMBER OF

REFERENCE IMAGES, AND “# BLUR IMAGE” MEANS THE NUMBER OF BLUR IMAGES

*DMOS indicates the difference of mean opinion scores (MOS) between the test image and its reference image.

sensor noise. There are 15 reference images with 4 levels
of Gaussian blur and 4 levels of additive white Gaussian
noise, resulting in 225 distorted images (the 15 reference
images are excluded).

3) Compressed blurred images in MLIVE2 simulate image
storage where images are out of focus and compressed
by the JPEG encoder. There are 15 reference images with
4 levels of Gaussian blur and 4 compression levels, which
results in 225 distorted images (The 15 reference images
are excluded).

4) Realistic blur images from BID and CLIVE are taken from
the real world and include a variety of scenes, camera
apertures and exposure times. There are 586 images in
BID and 1162 images in CLIVE in total.

B. Performance Comparison

In the intra-database experiments, 80% of the data are ran-
domly selected as training data, and the other 20% is used
for testing on each database. Training and testing data do
not share the same reference image. To avoid bias, this pro-
cedure is run 1000 times. Table III summarizes the median
performance values on the seven databases (LIVE, TID2008,
TID2013, MLIVE1, MLIVE2, BID and CLIVE). The pro-
posed SFA method achieves high performances on all seven
databases.

For Gaussian blur images, our SFA method is comparable
with BIBLE and SPARISH on LIVE, while it outperforms
the other NR methods on TID2008 and TID2013. The four
best NR methods on LIVE, i.e., BIBLE, SPARISH, SFA and
ARISMc achieve better performances than the FR method,
VSI.

For Gaussian blur images with Gaussian noise/JPEG com-
pression, the proposed method significantly outperforms both
the NR and FR methods. Noise increases the high-frequency
components of the image, while blur decreases them; there-
fore, most of the other methods suffer poor performance on
MLIVE1 due to the presence of noise (SROCC values are less
than 0.5, some of which even being negative). On MLIVE2,
most methods have an SROCC value of greater than 0.8 since
JPEG compression (similar to blur) also causes a reduction in
the high-frequency components. Noted that in addition to SFA,

ILNIQE is also a good NR-IQA method for Gaussian blur im-
ages with Gaussian noise/JPEG compression.

For realistic blur images, SFA achieves the best performance
on CLIVE and BID, and it achieves a significant performance
gain over the other methods in both prediction monotonicity
(i.e., SROCC and KROCC), accuracy (i.e., PLCC and RMSE)
and consistency (i.e., OR). The two general-purpose methods
suffer poor performances on BID and CLIVE. The first seven
blur-specific NR-IQA methods do not work well on realistic blur
image databases (PLCC < 0.55, KROCC and SROCC < 0.5)
due to their neglect of deep semantic features. RISE and Yu’s
CNN are slightly better than the first nine NR methods. This
can be explained by the fact that RISE considers multi-scale
and multi-resolution features, while Yu’s CNN attempts to learn
quality-relevant features.

Discussion on realistic blur: It is difficult to model all
the influencing factors in the real world. In addition to the
Gaussian and out-of-focus blur, there are other crucial fac-
tors to be considered, e.g., the motion blur in Fig. 7(a), the
ghosting in Fig. 7(b), the macrophotography in Fig. 7(c) and
the image content variation in Fig. 7(d). A substantial por-
tion of Section III has discussed the impact of image con-
tent variation. Here, we give a few comments on the other
factors.

1) Motion blur: there are few NR-IQA methods for estimat-
ing motion blur, although its related problem “motion de-
blurring”, has become a hot topic [50], [53]. Motion blur
has directionality, whereas Gaussian blur is isotropic. In
terms of the specific characteristic of motion blur, one
may further consider the directionality and the directional
features for quality estimation on motion blur images. We
believe the availability of a large realistic motion blur
image database with subjective ratings will certainly fa-
cilitate such work.

2) Ghosting: ghosting effects arise when the motion degree
is very high, in contrast to ordinary motion blur. Some re-
lated articles (e.g., [61]) have considered ghosting effects
in designing NR-IQA methods.

3) Macrophotography: the blur in Bokeh is used to strengthen
a photo’s expressiveness. In light of this, to assess the
perceptual quality of macrophotography images, aesthetic
factors may need to be considered.
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TABLE III
INTRA-DATABASE PERFORMANCE COMPARISON. IN EACH COLUMN, THE BEST PERFORMANCE VALUES OF NR METHODS ARE MARKED IN BOLDFACE

Fig. 7. Crucial factors (in addition to the Gaussian and out-of-focus blur) that
influence image quality of realistic blur images.

TABLE IV
THE T-TEST RESULTS ON LIVE [14], TID2008 [15] AND TID2013 [16],

MLIVE1 [17], MLIVE2 [17], BID [18] AND CLIVE [19]

1 (-1) indicates SFA statistically outperforms (underperforms) the compared method, and
0 indicates SFA is statistically on par with the compared method. We use ‘-’ since FR
methods are inapplicable on realistic blur image databases and results of BRISQUE on
LIVE are not available.

C. Statistical Significance

We conduct statistical significance tests to determine whether
the comparison results in the previous subsection are significant.
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Fig. 8. [Best viewed in color.] Global ranking and grouping of methods by their statistical significance results. The methods on the upper positions achieve a
better performance, and the methods within the same rectangle are statistically indistinguishable, i.e., their performances are similar.

On each database, a two sample t-test is conducted at 1‰sig-
nificance level using the SROCC value pairs of 1000 runs.

Table IV lists the statistical significance test results, where
1 (−1) indicates that SFA statistically outperforms (underper-
forms) the compared method, and 0 indicates that SFA is on par
with the compared method. On LIVE, SFA is significantly out-
performed by the FR method, IWSSIM; is on par with BIBLE,
SPARISH and ARISMc; and significantly outperforms the oth-
ers (including the FR method, VSI). On TID2008 and TID2013,
SFA method statistically outperforms the other NR methods,
while it statistically underperforms the two FR methods, IWS-
SIM and VSI. On MLIVE, SFA is the best method based on
the significance test, being even better than the two FR meth-
ods IWSSIM and VSI. On BID and CLIVE, SFA is statistically
superior to all the other NR methods. Generally, SFA statisti-
cally outperforms other methods. Moreover, we conduct further
statistical significance tests between each pair of methods. In
addition, based on the statistical significance results, we give a
global ranking and grouping of the evaluated methods on each
database in Fig. 8. SFA is always in the top rectangle, which
demonstrates the superior performance of SFA.

D. Performance on Waterloo Exploration Database

Waterloo exploration database [21] is a large IQA database
containing various image contents. We present the test results
of the proposed method on this database. RISE is considered
for comparison because of its top performance on the seven
databases. We first generate the blurred images by applying
2D circularly symmetric Gaussian blur kernels with standard
deviations (std) of [0.5, 1.2, 2.5, 6.5, 15.2] to the source im-
ages. Similar to [21], we generate 138,274,885 discriminable
image pairs (DIPs). Then we conduct a D-test, L-test and P-
test [21], whose results are shown in Table V. The D-test (D)
measures the ability of an IQA method to separate the pristine
and distorted images. The L-test (LS , LK ) evaluates the consis-
tency of IQA methods when doing monotonic predictions, i.e.,

TABLE V
THE D-TEST, L-TEST, AND P-TEST RESULTS ON THE WATERLOO

EXPLORATION DATABASE [21]

The definitions of D , LS , LK , P , Mi are referred to [21], [44], [55]

predicting image quality for images with different distortion lev-
els but the same content and the same distortion type. The P-test
(P,Mi) tests the ability of IQA methods to predict the relative
quality predictions on a number of DIPs. The D-test results of
both SFA and RISE are smaller than 0.9. This is because it is dif-
ficult for both SFA and RISE to distinguish the slightly blurred
images from the pristine ones, since there exists a slight blur
(i.e., std = 0.5). In addition, SFA is slightly inferior to RISE
in the D-test because the high-level features used in SFA are
less sensitive to slight blur than the low-level features used in
RISE. In the L-test, SFA can achieve more consistent monotonic
predictions than RISE. In the P-test, compared to RISE, SFA
greatly decreases the number of incorrect preference predictions
(Mi) from around 80000 to around 50000.

E. Generalization Capability

Generalization capability is an important issue for learning-
based methods. In this subsection, we verify the generalization
capability of SFA using cross-database evaluation and compare
it with RISE, since RISE is better than Yu’s CNN in terms of
the average performance on the seven databases. Fig. 9 shows
the SROCC of SFA and RISE. In most of the cross-database
experiments, the SROCC value of the SFA is greater than the
SROCC value of RISE, which means that our method has better
generalization capability than RISE.

For Gaussian blur image databases (LIVE, TID2008 and
TID2013), when the SFA model is trained on one database
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Fig. 9. [Viewed in color.] The SROCC values in the form of SFA/RISE in the
cross-database evaluation. In each entry, the better value is indicated in bold.
Note that the intra-database experimental results are also shown (in gray) as
a reference. The numerical values in red mean that the corresponding SROCC
values are negative. The blue blocks emphasize the results whereby both training
and testing data are simulated/realistic blur.

TABLE VI
SROCC AND PLCC OF THE PROPOSED METHOD WITH AND WITHOUT THE

ADAPTIVE LAYER SELECTION PROCEDURE

and tested on the other two databases, the SROCC values are
greater than 0.9165, which means a good generalization capa-
bility of SFA on Gaussian blur images. When SFA is trained on
noisy/compressed blurred images or realistic blur images, the
testing performance on Gaussian blur images is also encourag-
ing (SROCC > 0.76). Since realistic blur is substantially more
complex than simulated blur, SFA trained on simulated blur
images cannot be generalized to realistic situations. Therefore,
the SFA model trained on simulated blur does not perform well
on realistic blur. In realistic blur situations (BID and CLIVE),
SFA is trained on one of the realistic databases and tested on
the other database. It can be observed that the SROCC values
of SFA in cross-database experiments are greater than 0.63, be-
ing far greater than the reported SROCC values of RISE in the
intra-database experiments.

F. Contribution of Adaptive Layer Selection

The original layer chosen in the conference version was
“res5c” [20]. Compared to the conference version, the proposed
framework is modified with an adaptive layer selection pro-
cedure. Specifically, we adaptively determine the layer from
which to extract features using five-fold cross validation on
training data. Table VI lists the results of the proposed frame-
work with/without the adaptive layer selection procedure, where
the gain of using the adaptive layer selection procedure is also
reported. We can see that the adaptive layer selection procedure
improves the performance of SFA on the simulated images.

Fig. 10. [Best viewed in color.] The ratio of the selected ‘res3d’, ‘res4f’ and
‘res5c’ layer in the adaptive layer selection procedure. The original layer chosen
in the conference version is ‘pool5’, which is equivalent to applying the global
average pooling to the ‘res5c’ layer.

TABLE VII
THE AVERAGE COMPUTATION TIME (SECONDS/IMAGE) ON TID2013 (512 ×

384) AND MLIVE1 (1280 × 720)

In Fig. 10, we take a closer look at the ratio of the selected
‘res3d’, ‘res4f’ and ‘res5c’ layers in the adaptive layer selection
procedure. It can be observed that the ratios of the selected
lower level (‘res3d’ and ‘res4f’) layers on the simulated blur
databases are greater than the ratios on realistic blur databases.
These results experimentally verify that, the deeper features
are less effective in the quality assessment of the simulated
blur images compared to the realistic blur images. This can be
explained by the fact that there are less than 30 reference images
in the simulated blur database, which means less image content;
thus, the role of deeper semantic features is weakened. With
the adaptive layer selection procedure, the model chooses more
suitable deep features; therefore, the performance on simulated
blur images is significantly improved, while the performance on
realistic blur is barely changed.

G. Computational Efficiency

To compare the computational efficiency of different meth-
ods, all tests are performed on a desktop computer with an Intel
Core i7-6700K CPU at 4.00 GHz, 64 GB of RAM, Ubuntu
14.04 and MATLAB 2016b (Yu’s CNN is implemented us-
ing Python 2.7.6 on the same computer). We use the default
settings of the original codes and do not optimize them. The
average computation time (seconds/image) on TID2013 (512 ×
384) and MLIVE1 (1280 × 720) for each method is shown in
Table VII, which suggests that the computational cost of our
method is of the same order as the computational cost of certain
complex methods. However, our method can be more than 6x
faster when using a TITAN Xp GPU (0.8130 seconds/image on
TID2013 and 2.4164 seconds/image on MLIVE1). In addition,
we can enlarge the patch stride in the multi-patch representation
step to obtain a more efficient model.
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VI. CONCLUSION

In this work, we have shown that existing NR-IQA methods
contradict human visual perception on account of image content
variation. To alleviate the impact of image content variation, we
have proposed a novel NR-IQA method based on semantic fea-
ture aggregation (SFA), where semantic features are extracted
from the pre-trained ResNet-50 with an adaptive layer (fea-
ture) selection procedure, and the aggregation is achieved by
merging statistical characteristics. For quantitatively measuring
the impact of image content variation, we have designed new
experiments, constructed new datasets and defined new quan-
titative criteria in two scenarios. The experimental results have
verified the key role of deep semantic features in addressing im-
age content variation and have demonstrated the superiority and
generalization capability of SFA on both realistic and synthetic
images.
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