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Abstract—Light field (LF) has become an attractive repre-
sentation of immersive multimedia content for simultaneously
capturing both the spatial and angular information of the light
rays. In this paper, we present a LF image compression frame-
work driven by a generative adversarial network (GAN)-based
sub-aperture image (SAI) generation and a cascaded hierarchical
coding structure. Specifically, we sparsely sample the SAIs in LF
and propose the GAN of LF (LF-GAN) to generate the unsampled
SAIs by analogy with adversarial learning conditioned on its sur-
rounding contexts. In particular, the LF-GAN learns to interpret
both the angular and spatial context of the LF structure and,
meanwhile, generates intermediate hypothesis for the unsampled
SAls in a certain position. Subsequently, the sampled SAIs and
the residues of the generated-unsampled SAIs are re-organized
as pseudo-sequences and compressed by standard video codecs.
Finally, the hierarchical coding structure is adopted for the
sampled SAI to effectively remove the inter-view redundancies.
During the training process of LF-GAN, the pixel-wise Euclidean
loss and the adversarial loss are chosen as the optimization
objective, such that sharp textures with less blurring in details
can be produced. Extensive experimental results show that
the proposed LF-GAN-based LF image compression framework
outperforms the state-of-the-art learning-based LF image com-
pression approach with on average 4.9% BD-rate reductions over
multiple LF datasets.

Index Terms—Light field image compression, SAI synthesis,
adversarial learning, hierarchical coding.

I. INTRODUCTION

IGHT fields contain rich representations of real-world
objects and scenes, which enable tremendous applications
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Fig. 1.  Different formations of LF [3]: (a) SAI representation (b) EPI
representation. Bottom EPI: sampled from red lines; right EPI: sampled from
green lines.

such as view synthesis, depth estimation and 3D reconstruc-
tion. The commercialized light field cameras (e.g., Lytro [1]
and RayTrix [2]) provide flexibility for consumers with free
viewpoint change and post-processing for photograph refocus-
ing. Hence, light field can also be a solution for immersive
multimedia applications such as 3D gaming and movies, etc.
Basically, two kinds of data formations can be utilized for
LF visualization, sub-aperture image (SAI, Fig. 1(a)) repre-
sentation and epipolar-plane image (EPI, Fig. 1(b)) represen-
tation, which are illustrated in Fig. 1. Inspired by plenoptic
function [4], the SAIs originate from LF structure parameter-
ized by four elements (x, y, u, v), as illustrated in Fig. 2(a),
in which (x, y) indicates the lenslet angular geometry and
(u, v) denotes the spatial position. However, the EPIs can be
constructed by re-sampling one single row/column and restrict-
ing one spatial coordinate and one directional coordinate as the
constant. The details of SAI generation and EPI generation are
shown in Fig. 2(b) and Fig. 1(b), respectively.

The LF imaging process captures rich information, not only
in terms of the intensity of scenes but also the directions of the
light rays, which result in highly redundant data. This further
poses great challenges to the transmission bandwidth, storage
and processing (read/write). For instance, the raw LF image
captured by Lytro camera contains 5368 x 7728 x 3 pixels
which require over 20 times more memory for storage than
a single full high-definition (HD) image [6]. Moreover, after
decomposing LF into 4-D structure, the angular resolution
of Lytro camera captured LF image is 15 x 15 and the
spatial resolution is 434 x 625, which indicates that there
are 15 x 15 x 434 x 625 x 3 pixels from both spatial and
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Fig. 2. Tllustrating the process from lenslet to LF-4D structure: (a) LF-4D
parameterizations [S5]. LF can be parameterized by the lenslet positions (x, y)
and the pixel positions (i, v) behind one lenslet; (b) Generation of SAls by
re-sampling pixels in lenslet.

angular domains. Hence, there is a strong demand for the high
efficiency compression methods for LF images.

Recently, learning based algorithms for LF image
processing and compression have achieved promising
results [3], [6]-[8]. Tremendous attentions have been

focused on convolutional neural network (CNN) based
approaches for spatial and angular super-resolution (SR)
of LF-4D [3], [9]-[11], which inspire us to investigate the
synthesis and compression approach of LF content from the
learning perspective. In this paper, we propose a LF image
compression framework by taking the advantage of generative
adversarial network (GAN). More specifically, the LF SAIls
are firstly sparse-sampled to obtain the pseudo-sequence
which is then compressed by a standard video codec.
Subsequently, the unsampled SAls are generated by the
proposed LF generative adversarial network (LF-GAN) which
involves the sampled-then-compressed SAIs as priors. To
achieve high efficiency LF image compression, the residue
SAIs between the generated SAIs and their original signals are
also re-arranged as a pseudo-sequence to enhance the coding
efficiency. Moreover, since the particular geometrical structure
between SAIs makes the pseudo-sequence essentially different
from natural videos, we adopt a cascaded hierarchical coding
structure for the standard video codec to efficiently exploit
the inter-view correlations. Regarding the proposed LF-GAN,
we utilize the conditional adversarial learning approach to
implicitly adapt the scene of disparity in different perspectives.
More specifically, the sampled SAls are modeled as the LF

context prior for the unsampled intermediate views. The main
contributions of this paper can be summarized as follows:

« We propose a generative adversarial learning network for
LF (LF-GAN) SAI generation which, to the best of our
knowledge, is the first algorithm utilizing GAN model for
LF image compression.

o We establish the cascaded hierarchical coding structure
to facilitate the generation of SAIs as well as the optimal
bit allocation scheme for pseudo-sequences formed by
sparsely-sampled SAIs.

o The proposed LF image coding framework outperforms
the state-of-the-art learning-based LF image compression
approach in terms of rate-distortion (RD) performance.

The remainder of this paper is organized as follows.

Section II reviews the related work. In Section III, we present
details of the proposed LF-GAN approach for LF SAI gen-
eration. Section IV introduces the proposed LF image coding
framework using the proposed LF-GAN. Section V presents
the details of our implementation. We then validate the per-
formance of LF image compression in Section VI and more
analyses are also provided. Finally, the conclusion and future
work are discussed in Section VII.

II. RELATED WORK

In this section, we briefly revisit the related literatures from
the following aspects: LF view synthesis, LF compression and
deep learning (DL) based LF processing.

A. LF View Synthesis

One possible solution for LF view synthesis is the
image based rendering (IBR) techniques [12], the philosophy
of which focuses on synthesizing the intermediate views
via depth estimation from disparity maps between stereo
views [13]-[15]. However, these kind of methods often suffer
from severe visual artifacts due to simply averaging the
warped neighboring views after depth estimation for each
input image. Another category for efficient LF synthesis is
based on the concept of plenoptic function [4], [5]. In par-
ticular, the LF capturing process and the intermediate view
generation problem can be regarded as sparse-sampling and
approximation of the original plenoptic function. Specifically,
the pixels of the captured views are treated as sampling results
of a multidimensional LF function, such that the unknown
intermediate views can be formulated as function values (i.e.,
Lynknow = f(Lsampiea), | denotes the function which defines
the relationship between the sampled views and the unknow
view) determined after its reconstruction from sampled results.
As such, the synthesis of missing view in LF can be solved
by using interpolation methods [16], [17]. The EPI based
methods are also explored to synthesize the desired perspective
views within the LF structure [18]. The sparse representation
of the EPIs in transform domain [19], [20] has also been
investigated for intermediate view synthesis.

B. LF Compression

Numerous LF image compression methods have been
recently proposed [21], [22] and the standardization process
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Fig. 3. The diagram of acquisition, compression and processing pipeline for
LF content.

has also been initiated by JPEG Pleno [23]. There are mainly
two kinds of frameworks for LF coding, and the illustrations
for such two categories of LF image compression methods
are depicted in Fig. 3. The first kind of coding approach
directly compresses the raw LF sensor data obtained after
the LF acquisition step (red arrow in Fig. 3) and the lenslet
based intra coding algorithms are proposed by investigating
non-local self-similarity compensation prediction and local
linear embeddings [24]-[27]. This kind of approaches usually
integrates the philosophy of multi-hypothesis prediction [28]
into intra LF image compression and achieves significant
performance improvement in terms of coding gain and sub-
jective quality for reconstructed LF 4-D structure [29], [30].
Moreover, for plenoptic contents, the sensor-adaptive trans-
form and reshaping methods were proposed in [31] and [32]
to efficiently compress the lenslet images. The other cate-
gory considers the 4D representations of LF for compression
(blue arrow in Fig. 3). As such, the pseudo-sequence based
algorithms [8], [33]-[38] have been designed to decompose
the original lenslet data into SAIs. Subsequently, the SAIs
are organized into pseudo-sequences and compressed by video
encoder to reduce both the intra- and inter-frame redundancy.
Inter prediction can be investigated to adapt the content
variations for LF compression. These categories of LF coding
methods usually focus on the coding structure design of
SAIs [35]-[37], bit-rate allocation with rate-distortion opti-
mization (RDO) [8], [36] and sparse coding [38], [39] for
intermediate SAIs. Moreover, various scan orders during
pseudo-sequences generation from SAls are explored, such as
zig-zag, spiral, raster, Hilbert, rotation, and hybrid of hori-
zontal zig-zag and U-shape. Extensive experiments have been
conducted to evaluate their performance in [35]and [40]-[42].
In our previous work [43], we proposed a CNN based coding
scheme with the jointly optimized post-processing networks
for LF image compression.

C. DL Based LF Processing

DL based approaches have also achieved significant
advances in LF image processing, such as CNN based
view synthesis [7], LF reconstruction [3], LF super-
resolution [44], LF video caption [6], depth estimation [45].
Kalantari et al. [7] proposed CNN models for disparity
estimation and color prediction to synthesize views in
LF images, which can mitigate the trade-off between
the angular and spatial resolution in consumer light field
cameras. Gul and Gunturk [9] established the light field super
resolution (LFSR) framework to enhance both of the spatial
and angular resolution for LF-4D structure. As for LF video
imaging, Wang et al. [6] investigated the hybrid imaging
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system based on LF camera and conventional camera to
obtain LF videos, which could achieve 30 frame-per-second
(fps) LF video caption with the help of CNN models.
Yoon et al. [44] first augment the spatial resolution of each
SAI to enhance details by a spatial SR network. Then,
the unsampled views between the existing SAIs are generated
by an angular super-resolution CNN network. To achieve the
single view depth estimation, Garg et al. [45] proposed an
unsupervised framework to learn CNN model for single view
depth prediction, without requiring annotated ground-truth
depths.

III. LF GENERATIVE ADVERSARIAL NETWORKS

In this section, we introduce the LF-GAN which is adopted
in the compression framework. Specifically, we will first
introduce the whole network architecture of LF-GAN which
mainly contains three core components to achieve high quality
LF SAI generation. First, by taking the the surrounding
sampled SAIs as input, the multi-branch fusion network assim-
ilates the angular context as well as the spatial information
within SAlIs to generate the high order approximation of
the target perspective view of SAI. The advantage of the
proposed multi-branch fusion network lies in that no explicit
requirement for depth information from the input SAIs when
comparing with IBR based algorithms. Subsequently, to better
enhance the image quality of generated high-order approxima-
tion SAI from signal-preserving perspective, the refinement-
generator network is then applied after the fusion network. The
refinement-generative network aims at directly mapping the
high order approximation from fusion network to the generated
high quality SAI (SAl,¢fine). Finally, with the guidance and
assistance of adversarial learning [46] philosophy, we propose
the discriminative network to sharpen the edges and improve
the subjective quality of output SAIs generated by previous
two sub-networks. The illustrations of entire learning architec-
ture are provided in Fig. 4, including the overall infrastructure
of LF-GAN as well as each component, the multi-branch
fusion network, refinement generative network and discrim-
inator.

A. Multi-Branch Fusion Network

To obtain the intermediate missing views (SAIs), the context
information from both angular and spatial domains should be
taken into consideration. Here, we firstly design a multi-branch
fusion network (MBFN) to acquire a high order approximation
of the desired SAIs. As shown in Fig. 4, MBFN utilizes
p-neighbor (p equals the number of branches) SAIs as inputs
for the multi-branches, each of which shares the same network
structure design but with different weights and bias. Each
neighboring SAI is then fed into one individual branch con-
sisting of four convolution layers with non-linear activations,
and then the high order approximation of the target SAI can
be generated via concatenation and fusion for p— branches.
The normative definition of high order approximation can be
organized as follows,

SAIapprox :FMBFN(SAll, SAIZ,-“»SAIP), (1)
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The detail architecture of proposed LF-GAN framework. The fusion network first obtains the approximation of the targeting SAIL. Subsequently,

the refinement generative network generates the final estimation. To ensure sharp edges as well as detailed textures, the adversarial training is also utilized

during the final generation process.

where SAI;,i = {1,..., p} are input perspective SAI images
and Fyprn(-) denotes the proposed MBFN, each branch of
which is parameterized by

L;(0)=SAI;, 2)
Li(i)=PReLUW;;ixL;(i—1)+bj;), i=12,...,k—1,

(3)
Lij(k)=Wjrx Lijlk—1)+bji+ SAI;. (@)

Here j is the index and indicates the j-th branch of MBFN
which contains k convolution layers, and L (i) is i-th layer of
j-th branch of MBFN. It is worth noting that the Parametric
Rectified Linear Unit (PReLU) nonlinearity [47] is adopted
as our activation function for the first (k — 1)-th convolution
layers, Meanwhile, the residue connection is also deployed
to speed-up learning process which is described in Eqn (4).
It should be also noted that we further utilized 1 x 1 convo-
lution for the concatenated feature maps of p—branches such
that the output of MBFN is converted into image domain with
one channel.

x; ifx; >0,

;= Xi

1 1 .

Y — ifx; <0,
ai

(5)

where a; is a learnable parameter for each convolution output
channel x; in the training process via back propagation. Hence,
the learning loss function of MBFN is formulated in Eqn (6).

ﬁMBFN(SAItarget, SAlapprox|n)

wid—1hgt—1
i=0  j=0

X (SAIIarget[i][j] - SAIapprox[i][j])2 + /1”77”2» (6)

where 7 capsules the network parameters and SAlgger
denotes the label SAI. Moreover, the network parameter set-
tings are described in Appendix.

B. Refinement Generative Network

After approximating the target SAI via MBFN by taking
advantages of the neighboring SAIs, the refinement generative
network (RGN) is then proposed to enhance the generated
SAI quality. By building the bridge between the label SAI
domain and high order approximation domain, RGN tends
to directly learn the mapping between such two spaces with
the objective of minimizing the L; distance between SAl;4rger
and RGN(SAI_approx),

ACRGN(SAItarget, SAIapprox|®)
wid—1 hgt—1
= Z Z (SAItarget[i][j]
i=0  j=0
— RGN (S Alupproxi1Lj1)* + 21012, (7

where wid and hgt are the width and height of each SAI,
the Ly norm of © is the regularizer for the parameters of
RGN.

In analogous to MBFN, we use fully convolutional
layers for the network structure of RGN which takes the
SAlupprox as input and generates the SAlycrine (SAlrefine =
RGN(SAlipprox)). The loss function in Eqn (7) is adopted
for optimization. RGN contains six convolution layers, and
the first five layers of RGN adopt PReLU activation after
convolution operation. By contrast, the last layer of RGN does
not contain any non-linearity function. Moreover, the interme-
diate layers also apply batch normalization after activation to
speed-up the training process [48]. Table III in Appendix pro-
vides the details of each layer in RGN.

C. Discriminative Network

With the great success achieved by adversarial
learning [46], the unsupervised adversarial learning is
widely adopted and utilized in image generation [49], image-
to-image translation tasks [50] and generative compression
for images [51]. Since disparity exists between different SAls,



JIA et al.: LF IMAGE COMPRESSION USING GAN-BASED VIEW SYNTHESIS

Residue of

181

— J—

(2 unsampled SAls i i |

| s
|| (}—4@

P

Sparse Sampled
LF Structure

Cascaded Hicrarchical

Coding Structure

Fig. 5.

the trivial convolution layers cannot handle such external
difference among SAIls. To tackle this issue, we establish
the learning framework with heuristic generative-adversarial
module which is able to compensate the SAI disparity
from the unsupervised learning perspective. In particular,
the previous RGN and one discriminator D), parametrized
n, are jointly optimized with following learning objective:

Ingn max Eywptarget log D” (y)

n
+EX"‘prefine log(1 — Dn(RGN(X)))» (8)

where prarger and prefine are the empirical distributions of
SAliarger and SAl,fip, training samples, respectively.

The architecture of D, is shown in Fig. 4, which is
composed of six convolution layers followed by two dense
connected layers with dimension 128 and 1, respectively. The
network structure is listed in Table IV. Basically, the number
of feature maps is identical from the first layer to the sixth
convolution layer. The receptive field of each convolution
layer is restricted into 3 x 3 with same padding strategy, and
two fully connected layers are responsible for the dimension
reduction from feature space to the discriminative results.
Hence, the objective of D, is to generate a binary decision
for the sake of discriminating whether the output of RGN’s
output is real or fake. In this manner, the minor disparity can
be compensated for the generated SAIs, and sharper edges as
well as realistic textures can also be obtained.

D. Loss Function Designation

To guarantee the high quality signal restoration as well as
the perceptual quality for LF-GAN, both adversarial loss [46]
and mean square loss are adopted in our final model. The
loss for MBFN, RGN as well as the discriminator D are
simultaneously optimized by assigning hyper-parameters for
them to achieve multi-task learning,

L= *LyprN+A2*% Lren+23 % LD, Zii =1,

i

©)

where the £y prn and Lrgy denote the mean square loss of
MBEN and RGN respectively, Lp is the adversarial loss. It is

i
|
|
|

p Als I Unsampled |
l—‘ | SAls
___ _Bitstream || LF-GAN

| Video Decoder

Encoder

(b)

The diagram of proposed LF image coding framework via GAN based view synthesis. (a) Encoder; (b) Decoder.

worth noting that the hyper-parameters 4; are empirically set
during implementation. Herein, the adversarial loss Lp acts
the role of encouraging RGN to favor the generated results in
the manifold of SAIs,

Lp =) log(l — D,(RGN(x,))).

i

(10)

IV. LF IMAGE COMPRESSION FRAMEWORK WITH
GAN BASED VIEW SYNTHESIS

The proposed LF image compression framework with GAN
based view synthesis is presented in this section. We first
demonstrate the overall framework of the proposed coding
framework for LF images. Subsequently, we introduce the
details of the proposed cascaded hierarchical coding structure
for pseu do-sequence based SAI coding. Finally, RD analysis
is performed to achieve optimal bit allocation in the encoding
process.

A. Overview

The entire working flow of the proposed LF image com-
pression framework is depicted in Fig. 5. For the encoder side,
the N x N (Nequals8 in Fig. 8(b)) SAls are first sparsely sam-
pled and then re-organized into pseudo-sequence according to
the raster scan order. The red arrow in Fig. 8(b) illustrates the
procedure from SAIs to pseudo-sequence. It should be noted
that the blue rectangles represent the sampled SAIs while
white ones are unsampled SAIs. Once the pseudo-sequences
are obtained, the standard video codec is utilized to remove
the intra- and inter-SAI redundancy. Since the SAI based
pseudo-sequence has different content geometry features and
RD characteristics, we propose the cascaded hierarchical cod-
ing structure to establish the reference frame relationships for
the coding of pseudo-sequences. Moreover, the optimal bit
allocation scheme for such coding structure is also explored.
To generate the unsampled SAIs, the proposed LF-GAN takes
the sampled-and-compressed SAlIs as LF context prior and
synthesizes the target SAls after joint training of MBFN,
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(@)
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Fig. 6. The proposed cascaded hierarchical coding structure, where the white
rectangles are un-sampled SAIs. (a) picture order count (POC) for raster scan;
(b) the proposed coding order. There are four different temporal layers for
SAIs (dark green: layer-0, green: layer-1, gray: layer-2, blue: layer-3).

RGN and discriminator. Since the input of LF-GAN is the
codec-compressed SAIs, the compression error will propagate
to the synthesized SAIls through the networks. To address
this issue and further enhance the quality of synthesized
SAls, the residue data of unsampled SAIs are obtained by
subtraction between original signals and LF-GAN synthesized
signals at the encoder side. After re-arranging the residue
SAIs into pseudo-sequence as previously mentioned method,
the residue data can also be compressed using standard video
codec and transmitted to the decoder. Hence, the bitstream of
proposed LF image coding framework consists of two separate
segments, the bitstream for sampled SAIs and the bitstream for
residue data of unsampled SAIs. In general, compared to [8],
our framework offers more flexibility to intermediate view
synthesis due to GAN based model. Moreover, different from
one model for all circumstances in [8], particular models are
trained for different QP values to adapt to different distortion
level.

B. Coding Structure

The cascaded hierarchical coding structure which treats
the whole pseudo-sequence as a group-of-pictures (GOP) is
employed [37], as shown in Fig. 6. Such reference picture
order can facilitate the quality of generated unsampled SAIls
since the coding order is a two-dimensional extension of
conventional hierarchical reference scheme in HEVC, which
is able to provide the high-quality reference pictures during
coding. It is worth noting that there are four different tem-
poral layers for SAls in our coding structure, as illustrated
in Fig. 6(b), in which different colors correspond to different
layers in Fig. 6. The dark green rectangles correspond to
layer-0, green rectangles indicate layer-1, gray rectangles mean
layer-2 and blue rectangles represent layer-3. The pictures with
higher layer numbers can select the lower layers pictures as
references. Inspired by the work in [37], the proposed coding
structure utilizes first-row-then-column temporal layer based
coding order, which implies horizontal SAls are coded first
and then vertical SAIs. Taking picture order count (POC)
20,21,22,23 in Fig. 6(a) as an example, the coding order
for this row should be 19,18, 17, 13 in Fig. 6(b). As such,
the number of reference pictures for frame POC-19 is 10,
which is also the maximum size of reference picture buffer
in our adopted coding structure.

C. Joint RD Optimization Bit Allocation

Due to the fact that the residue data is treated as the
source signal for compression, the pseudo-sequences hold
completely different RD characteristics compared with con-
ventional natural videos. As such, existing bit allocation
algorithm in the standard video codec cannot be directly
applied for the LF image compression. Hence, we propose the
joint R-D optimal bit allocation mechanism based on the LF
coding structure to achieve a good balance between sampled
SAIs and unsampled SAIs representation. The optimization
objective of our RDO is to minimize the distortion D of
compressed pseudo-sequence with the given bit budget R;.
As proposed in [8] and [52], the analysis methods for RD
model are investigated via rate-quantization (R-Q) model and
distortion-quantization (D-Q) model. Therefore, the RD mod-
els for sampled SAIs pseudo-sequence and unsampled SAIs
pseudo-sequence encoding are jointly formulated as follows,

K

min D; i.sp) + Dj isps> qi ,
G 2 X K ;[ t,sp(%,sp) l,usp(‘]t,sp Cb,usp)]

K

S.t. Z[Ri,sp (Qi,sp) + Ri,usp (Qi,spa ‘Ii,usp)] <R
i=1

(1)

where ¢;sp and g; ,sp are the quantization step for sampled
SAIs and unsampled SAls respectively, D;, and R;gp,
represent the distortion and rate for the i-th frame and
K denotes the number of frames in the sampled SAI
pseudo-sequence. Analogously, D s, and R;,s, represent
the distortion and rate for the residue of unsampled SAI
pseudo-sequence. It should be noted that K equals 32 for the
sampled-SAl-pseudo-sequence and the residue of unsampled-
SAls-pseudo-sequence. Moreover, each frame corresponding
to the unsampled SAIs! can be regarded as the residue images.
After incorporating the Lagrangian multipliers into Eqn (11),
the constrained optimization problem can be converted into
the following unconstrained one:

K

ql‘,spr,rt}g}sp,i I K ;[Di,sp (Qi,sp) + Di,usp (‘Ii,sp, Qi,usp)]

K
+4 Z[Ri,sp (Qi,sp) + Riusp (‘Ii,spa Giusp) — Re],  (12)
i=1
where the 1 is Lagrange Multiplier of the optimization prob-
lem. To solve the optimization problem, we establish the D-Q
model and R-Q model for sampled SAIs and unsampled SAIs.
It is worth mentioning that similar studies have been conducted
in [8] and [52], and our modelling is particularly derived for
the GAN based view synthesis, since the views generated by
LF-GAN have different RD behaviour.

1) RD Model for Sampled SAls: For sampled SAls,
Fig. 7(a) plots actual encoding bits with different g; 5, values
for four LF images, where we can observe that there exists
exponential relationship between the rate (bit-per-pixel, BPP)
and the inverse of g;;,, which is different from the linear

IFor brief discussion, we denote the residue of unsampled-SAls-pseudo-
sequence as unsampled SAls, sampled-SAls-seudo-sequence as sampled SAIs.
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BPP (bit/pixel)

Fig. 7. (a) Illustration of the rate-quantization relation; (b) illustration of the
distortion-quantization relation with different Qstep values (g;,5p) for the six
LF images.

R-Q model in [8]. As for the D-Q model, an obvious linear
relationship between the distortion (mean-square-error, MSE)
and ¢g;sp in a log-scale can also be observed according to
Fig. 7(b).

Therefore, we use the natural exponential function and
power function in terms of g; s, to model the R-Q and D-Q
model of the sampled SAIs, respectively,

13)
(14)

q°
Risp(qisp) = a xe’isr,
DiaSP (Qi,sp) =0 % qz)sp,

where a, b, 6§ and ¢ are the empirical parameters fitted by the
two-pass encoding scheme which will be described in the next
Section.

2) RD Model for Unsampled SAls: For unsampled SAIs,
the modelling is complicated as the prediction of unsam-
pled SAIs is generated via compressed sampled SAIs using
LF-GAN. Then the residue data are obtained by subtracting the
original signal with the generated prediction value. Therefore,
there are two major factors which have influence on the
RD model of residue data: g;,sp and g;p. For simplicity,
we directly reuse the model proposed by Hou et al. in [8],
where the R-Q model for unsampled SAIs is defined as,

Riusp(Giusp» Gisp) = € * Qfsp * qi}jusp’ (15)

where ¢ > 0, > 0 and y > 0 are model parameters. The
D-Q model for unsampled SAIs are formulated as follows,

Di,usp (Qi,uspa qi, sp) =0x Q?gp

+(P14]5, + P04,y + (K1g], + ko). (16)

By eliminating the intermediate variables, we are able to solve
the optimization problem in Eqn (11) via substituting the terms
with Eqn (13)—(16) to Eqn (12). Hence, the unconstrained
optimization problem is given by,

min J
qi,sp >qi,uxp>j~

K
1 1 _ 1
=% > [0 % qfsp + E(mqiw + po)qi,uﬂp + E(quffsp
i=1

K
b
ko) + 4 Z[aeqmp + qusp * qi}jusp — Ril.
i=1

a7)
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However, Eqn (17) is an underdetermined and non-convex
problem. To tackle this issue, we introduce the equal-QP
assumption to simplify the equation. Therefore, the following
condition can be imposed,

i=1,... (18)

It should be noted that Eqn (18) implies that each frame in
sampled SAIs uses identical QP value. For the unsampled
SAIls, we have the same constraint. Therefore, the Eqn (17)
can be elegantly re-written as,

i,sp = 4sp> Gi,usp = Yusp, , K.

min
qsp>Qusp> A

1 1
7 = 1098, + 5 (1145, + P}y + 5 kil + ko)l

Ry). (19)

For the above function J, we take the first-order partial
derivative respect to 4, gsp, usp to obtain Eiﬁ s 6‘21]
respectively. After setting them to zeros, we could obtain the

following relationship,

b
+/1(aeqsp + ng;q:,}:sp -

b
ae®r + Cqsi;qgsp =R
(¢0qfy" + >

+ i(abeqqu;

qusp Clusp-i- qu 1)

+cBqly!

=0 (20)
QMS]) =

1 _ —1
= 5 (145, + POy, + A7 alpdisp = 0.

Therefore, once all the parameters in Eqn (20) are determined,
the optimal bit allocation scheme can be achieved by solving
the gsp and qysp.

V. IMPLEMENTATION

The implementation details of the proposed coding frame-
work are presented in this section, including the network
architecture, training methodology and RD optimization for bit
allocation. Firstly, we explain our network architectures. The
training details are subsequently discussed, and finally the two
pass encoding scheme is described to solve the aforementioned
bit allocation optimization.

A. Network Architectures

1) MBFN: To achieve arbitrary positioned SAI generation,
the neighbor SAIs are utilized as LF structural context. As
shown in Fig. 4, suppose the central SAI is missing and
needs to be generated. The MBFN takes the neighboring SAIS
(top, bottom, left and right) as input. The fusion process
contains four different branches with identical architecture.
Each branch is composed of four convolution layers with
3 x 3 receptive field and 32 feature maps for each layer
respectively. PReLLU acts as the nonlinearity function for all
convolution layers except for the last layer. Moveover, each
branch utilizes the skip connection between input and output to
take advantages of residual learning. The concatenation of all
branches realizes the final fusion process, which generates the
high order approximation (SAlypprox). Detailed configuration
of MBEFEN is listed in Table II, where Conv denotes convolution
layer, Concate is the the concatenation of each branch and the
slop value (a; in Eqn (5)) for PReL.U is set to be 0.1. It is also
worth mentioning that the Layer4 in Table II of Appendix is
used for fusion.
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2) RGN: After SAlypprox is obtained, the final estimation of
the target SAI can be generated by RGN, which consists of six
convolutional layers to build the mapping between high order
approximation and target view (f : SAlypprox = SAliarger)-
In analogous to MBFN, the detail parameter settings of RGN
are shown in Table III.

3) Discriminator: To distinguish the proposed LF-GAN
with previous CNN based methods, the adversarial training
strategy is adopted since adversarial loss can naturally preserve
the sharp edges as well as preventing the over-smoothing of
detail texture. Therefore, the adversarial training can benefit
the estimation and generation of slight disparity among neigh-
bor SAIs while the conventional CNN based method only aims
at reconstructing image in terms of Ly loss. In our imple-
mentation, the discriminator contains six convolution layers
followed by two dense connected layers (with dimensions
128 and 1 respectively). The details are provided in Table IV
where fc denotes fully connected layer. It is worth mentioning
that the batch normalization is configured for each convolution
layer after activation to accelerate training.

B. Training Details

Since the proposed LF-GAN consists of three different
components (MBFN, RGN, Discriminator) and is based on
adversarial learning, to reduce the instability and optimize
the performance, the progressive training method is adopted.
Specifically, the component-wise training for each individual
module is first performed, and the joint training with all
components can be achieved. In particular, we first train the
MBEN module with the Euclidean distance. Subsequently,
the RGN and discriminator are trained with the loss defined in
Eqn (7). Finally, we initialize each component with pre-trained
weights to jointly optimize the whole system with Eqn (9).

1) Training Data: Let us denote each training sample as
(¢, yoT), where ¢ contains four blocks from four neighboring
SAIs respectively, and ygr is the corresponding ground truth
block in the central SAI (as shown in Fig. 4). We train
LF-GAN system to obtain the best estimation of ygr by using
¢(m — 1,n),¢p(m + 1,n), p(m,n — 1) and ¢(m,n + 1) as
inputs, where the ¢(m — 1, n), p(m + 1,n), p(m,n — 1) and
¢(m,n+1) represent the blocks from neighboring SAIs to the
top, bottom, left and right of ¢ (m, n) respectively. It should be
noted that m and n are SAI index in LF-4D structure, where
me{l,...,x},n e {l,...,y} in Fig 1(a), and x, y are the
angular resolution dimensions. The resolution of each SAI is
340 x 496 in our experiments. In the training phase, we divide
SAIs into 36 x 36 sub-images with no overlap to train the
whole network. During the testing phase, the entire SAls are
processed. It should be noted that we train different models for
different QP values and all the context SAls are compressed
SAIs which can guarantee the consistency between encoder
and decoder.

2) Boundary SAls: It is worth noting that some of the
context SAIs may be unavailable for the boundary SAIs in
LF-4D structure (Fig. 8(a)), i.e., the SAIs between POC-0
and POC-1 in Fig. 6(a). For better illustration, we classify
the boundary cases into six different categories, which are

1101 S

SIS g

SA

d.1 d3 ds
top SAI unavailable ~ right SAI unavailable  top&right SAI
unavailable

B

left SAI unavailable bottom SAI unavailable bottom&left SAT

unavailable
(d)

Fig. 8. (a) Illustrations of LF-4D structure, and the inner 8 x 8 LFs are
used in our experiments; (b) sparsely sampled SAIs, and each small rectangle
indicates one SAI in (a). Blue SAIs are needed to be compressed while
white ones are generated at the decoder side by proposed LF-GAN using
decoded neighboring SAIs; (c) hierarchical coding order of pseudo-sequence;
(d) boundary case: only two or three SAls are available (blue), and we use
the average of the three blue decoded SAIs to fill the red rectangle.

illustrated in Fig. 8(d). There could be only three neighboring
SAls available and one SAI unavailable (d.1-d.4 in Fig. 8(d))
or two SAls available and two missing (d.5-d.6 in Fig. 8(d)).
To elegantly address this issue, we utilize the linear prior of
the existing three SAls to approximate the unavailable SAI.
Specifically, the available (blue rectangle in Fig. 8(d)) SAIs
are averaged to obtain the unavailable SAIs (red rectangle
in Fig. 8(d)) with following relationship,

h
i=1 SAlavailable
h 2

SAlynavailable = (21)

where h denotes the number of available SAIs (in our frame-
work, h =3 or 2in d.1 — d.4 or d.5 — d.6 respectively). By
using the linear prior, we can guarantee four input SAls for
LF-GAN.

3) Solver: Regarding the parameters of solvers, the default
initializer in Keras [53] is used for the weights and bias initial-
ization. All the training data are scaled between [0, 1] to avoid
over-fitting and gradient explosion. To optimize the objective
function Eqn (9), we utilize Adam [54] as the optimizer
with learning rate 0.0001. Since the hyper-parameters are of
vital influence on the convergence and performance of deep
networks, we set the two hyper-params of Adam, £ and > to
be 0.9 and 0.999 respectively. Moveover, the hyper-parameters
Ai, i ={1,2,3} in Eqn (9) are set to be 0.3, 0.65, 0.05 empir-
ically, which can ensure the pixel-level reconstruction quality
as well as the displacement between neighboring SAIs. Within
our training, we utilized the 36 x 36 training patches and
the batchsize for training is set to be 128. For each model,
60, 000 training iterations are needed for the LF-GAN to get its
convergence. The whole learning framework is implemented
based on the widely used DL library Tensorflow [55] and
Keras [53] as back-end and front-end respectively.
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C. Optimal Bit Allocation

To achieve high compression efficiency with optimal bit
allocation, we utilize the two-pass encoding mechanism to
obtain the model parameters in Eqn (20). For the first encod-
ing pass, in which the sampled SAIs and unsampled SAIls
are respectively encoded with 4 different QPs (QP;, =
18,22,28,34, and QP,, = 21,27,33), generating 4 data
points for R-Q model and D-Q model of sampled SAls,
and 12 points for unsampled SAIs. Therefore, the parame-
ters (a,b,c,B,y,t,u,0,¢, po, p1,ko, k1) in Eqn (19) can
be obtained using data regression for Eqn (13)—(16). Hence,
the parameters for optimal bit allocation of sampled and
unsampled SAIs can be determined. In the second coding
pass, the two pseudo-sequences (sampled SAIs and unsampled
SAls) are encoded with the calculated g5, and qyp.

V1. EXPERIMENTAL RESULTS

To validate the performance of the proposed GAN-based
LF coding framework, the coding efficiency for LF images is
tested and compared with the state-of-the-art learning based
LF image compression method. In particular, we first analyze
the RD performance and compare the LF SAI synthesis ability
among multiple DL models for LF SAI interpolation, and then
conduct the empirical analyses during training and present the
complexity of the proposed LF-GAN.

A. Experiment Configurations

In our experiments, the EPFL LF image dataset [56]
(Class A), Stanford light field dataset [57] (Class B) and HCI
dataset [58] (Class C) are chosen for training and evaluation.
Specifically, nine images from EPFL dataset, three images
from Stanford dataset and four images from HCI dataset
are selected for testing. It should be noted that there is no
overlap between training set and test set. For the LF image
pre-processing, the lenslet images in these datasets are firstly
decomposed into LF-4D structure to obtain SAls. To achieve
fair comparison with [8] in terms of angular resolution of the
LF images, only the internal 8 x 8 SAIs (depicted in Fig. 8(a))
are used for processing and compression because of the
significant decomposition distortion of the boundary SAIs.
For the sparse sampling, as shown in Fig. 8(b), each small
rectangle represents one SAI. The SAIs marked with blue are
those views to be sampled while the white ones are generated
by LF-GAN at decoder side. Moreover, the bitdepth for the
LF pseudo-sequence is 8-bit and the color space format is
YUV420.

For the proposed scheme, we firstly sparsely sample the
SAIs in the LF-4D structure (as shown in Fig. 8) and compress
those SAIs using the video codec HEVC (HM-14.0) with
the proposed coding structure (Fig. 8(c)) and bit allocation
scheme. Then, the residue SAIs are obtained and also com-
pressed with the proposed coding structure and bit allocation
method. Hence, the bitstream consists of the compressed
sampled SAIs and the residue data. Subsequently, we generate
the intermediate unsampled SAIs at decoder side by LF-GAN
with the decoded SAIs as neighboring context. To achieve
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final reconstruction, the residue information is added into the
generated SAIs.

B. Coding Efficiency Comparisons
The RD performance in terms of BD-PSNR and
BD-rate [59] for each test LF image is shown. The PSNR
value of luminance channel (PSNRy) is the averaged value
for all SAIs according to [23],
1 8 8
PSNRy = -~ > > PSNR[m][n],

m=1n=1
The PSNR value of each SAI is calculated as follows,
[(1 << bitdepth — 1)2]
MSE ’

w h

1

— > D (SALecli1lj1= S ALorili 1L/1)?,
i

(22)

PSNR[m][n] = 10 xlog,

MSE =—
hx

(23)

where h, w are spatial resolution of each SAI, and SAI,.. and
SAl,,; denote the reconstructed SAI and uncompressed SAI
respectively.

The coding performance BD-PSNR and BD-rate are listed
in Table I. To generate the HEVC baseline (HM-14.0), we uti-
lized two default coding structures low-delay P (LDP) and
random access (RA) to compress both sampled SAIs and
unsampled SAIs. From the last five columns of Table I, we can
see that the proposed approach achieves significant coding
gain with respect to HEVC. Multiple different anchors are
compared in our experiments. For the LDP configuration,
the proposed method obtains 32.6% BD-rate reduction on
average and up to 40% bit-rates can be saved. While the per-
formance for RA configuration, the proposed method achieves
14.8% BD-rate savings and 0.66dB BD-PSNR gain on aver-
age. To illustrate the effectiveness of proposed method, we also
compare with the state-of-the-art learning based LF image
compression methods. In general, the proposed LF-GAN based
LF image coding framework outperforms the state-of-the-art
learning based LF image compression approach [8] with over-
all 4.9% BD-rate reduction and 0.15dB BD-PSNR gain. We
also compare the proposed approach with the pseudo-sequence
based algorithm in [36]. And our method outperforms the
algorithm in [36] with 8.1% BD-rate reduction over three
different datasets. It is worth noting that the coding efficiency
for three different datasets (Class A-C) remains consistent
which show that the generalization ability of the LF-GAN is
promising.

To better understand the performance of proposed approach,
the RD curves of each test image are also provided in Fig. 9.
Clearly, we can observe that LF image compression perfor-
mance is significantly improved in a wide bit range by using
the proposed GAN based view synthesis coding framework.

C. Quality Comparison of Different SAI
Generation Algorithms

To better illustrate the advantage of the proposed method
when generating the unsampled SAls, we provide the sub-
jective and objective ablation comparisons between the SAls



186

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 1, MARCH 2019

TABLE I

RATE-DISTORTION PERFORMANCES IN TERMS OF BD-RATE (%) AND BD-

PSNR (dB) oF PROPOSED GAN BASED LF IMAGE CODING FRAMEWORK

LF Images Anchor: [8] Anchor: [8] w/o RDO Anchor: [36] Anchor: HEVC LDP Anchor: HEVC RA
¢ BD-rate BD-PSNR BD-rate BD-PSNR | BD-rate BD-PSNR BD-rate BD-PSNR | BD-rate BD-PSNR
Ankylosaurus_Diplodocus_1 -15 0.05 217 0.77 -14.9 0.72 -16.2 0.55 6.8 0.20
Bikes 35 0.09 216 0.69 7.8 0.20 42,0 9.00 155 0.47
Danger_de_mort 6.3 0.22 248 1.04 -10.8 0.28 445 2.19 284 1.24
Desktop -33.1 0.70 223 0.94 8.7 0.12 -26.9 0.58 10.1 0.16
Class A: EPFL Dataset Flowers 11.68 0.48 7.0 0.36 119 0.54 245 1.17 13 0.11
Fountain_Vincent_2 5.6 0.16 232 0.84 9.0 0.31 -40.8 1.65 204 0.70
Friends_1 0.6 0.00 -16.3 0.55 -19.0 0.55 255 0.87 03 0.03
Stone_Pillars_Outside 3.1 0.12 29.0 1.05 -18.1 0.53 422 1.64 275 0.85
Aloe -10.0 0.37 287 1.12 9.1 0.31 479 231 317 1.38
Class B: Stanford Dataset Vegetables 4.6 0.16 -18.0 0.65 -10.2 0.22 -40.0 1.73 111 0.40
Orchid_Purple 3.1 0.09 148 0.47 3.1 0.08 376 141 8.2 0.26
Bedroom -1.7 0.07 -12.9 0.34 3.6 0.08 236 0.92 -18.4 1.04
Class C: HCI Dataset Bicycle 5.6 0.29 134 0.66 5.9 0.18 30.1 245 132 1.09
Herbs 22 0.11 52 0.54 33 0.19 215 135 183 0.37
Origami 338 0.05 123 045 43 0.04 -18.0 0.55 -15.1 0.95
Class A 5.6 0.11 20.8 0.78 -12.5 0.41 328 1.27 113 0.43
Class B 5.9 0.21 205 0.75 74 0.20 417 1.82 -17.0 0.68
Class C 3.3 0.13 -11.0 0.50 43 0.12 233 1.32 -16.2 0.86
Overall 4.9 0.15 174 0.68 8.1 0.24 326 147 -14.8 0.66
47
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Fig. 9. The rate-distortion curves of each test image: (a) Ankylosaurus_Diplodocus_1, Bikes, Danger_de_mort, Desktop; (b) Flowers,

Fountain_Vincent_2, Friends_1, Stone_Pillars_Outside; (c) Aloe, Vegetables, Orchid_Purple.

generated by different DL models in this section. Particularly,
three algorithms are analyzed, the proposed method, the algo-
rithms in [8] and [44]. We should note that we control all
other variables to make the comparison fair and persuasive.
Furthermore, in this ablation study, the test images are free
of compression such that we could exclude the nuisance
introduced by compression artifacts.

The central view of the 8 x 8 LF is utilized for illustration.
We could easily observe from Fig. 10 that the proposed method
achieves better perceptual quality with more the textural details
when comparing with [7] and [44]. In particular, our models

tend to keep structural consistency for the image content and
with less over-smooth phenomena.

D. Analysis and Discussions

Regarding the computational complexity, we record the run-
ning time of GAN based view synthesis on a single PC, which
is with Windows 10-64 bit system with Intel(R) Core(TM)
i5 7300HQ and 8 GB memory and the GPU is NVIDIA
GTX 1050Ti. The version of Tensorflow [55] and Keras [53]
are 1.4.0 and 2.1.2 respectively. The average running time
of all test LF images for GAN based view synthesis is
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Fig. 11. The summary of different loss when training the adversarial network.
G-loss: loss of RGN; D-loss: loss of Discriminator; F-loss: loss of MBFN;
MSE: loss between label and the output of RGN.

52.6334 seconds. It is obvious that there is a clear margin
for real-time LF image codec to use such framework, and the
future work will focus on the inference optimization of the
network by using model compression and acceleration.

Another interesting topic is the stability issue when training
the RGN and discriminator of LF-GAN, which has been a
widely discussed problem in deep learning community. We
plot the loss values of different components in our LF-GAN
in Fig. 11: G-loss (blue) is the loss of RGN, D-loss (red)
denotes the loss of Discriminator, F-loss (green) is the loss of
MBEN and MSE (black) denotes the loss between the output
of RGN and the label. We can see that the G-loss, F-loss
and MSE quickly gets their convergence after 200 epochs of
training and the curves become flat. However, the D-loss does
not show similar behaviors. Although finally the discriminator
gets a relative good convergence, the unstable issue during
training may affect the performance of LF-GAN. Therefore,
a potential future research direction may focus on the stable
training for GAN.

VII. CONCLUSION

The novelty of this paper lies in that we address the LF
image compression problem based on the advanced GAN
based view synthesis to improve the coding efficiency. In par-
ticular, the GAN based view synthesis network, LF-GAN, with
an unsupervised visual perceptual learning model to generate
the unsampled SAls, is adopted. By analogy with adversarial
learning, the proposed LF-GAN, which is composed of a CNN
based architecture with input fusion network, generator and
discriminator, can reliably generate the contents of an arbitrary
positioned SAI conditioned on its surroundings. Since the
SAIs based pseudo-sequence has different RD characteristics
with natural videos, we propose the typical hierarchical coding
structure for pseudo-sequence based coding to facilitate the
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Fig. 10. Visual quality comparison of the generated SAI for test LF image Desktop: (a) original; (b) by proposed (SSIM: 0.9921); (c) by [7] (SSIM: 0.9456);
(d) by [44] (SSIM: 0.7123).

generation of intermediate SAIs in LF structure. For better
reconstruction for SAIs, the residue data of generated unsam-
pled SAIs are compressed and transmitted to the decoder-side.
To further enhance the coding efficiency, the joint optimal
bit allocation scheme is also proposed for sampled SAls and
unsampled ones. We quantitatively demonstrate the effective-
ness of our proposed LF image compression framework with
GAN based view synthesis. Extensive experimental results
show that the proposed method outperforms the state-of-the-
art learning based coding approach.

APPENDIX
DETAIL PARAMETERS OF LF-GAN

The network parameter settings for MBFN, RGN and Dis-
criminator are provided in Tables II, III and IV, respectively.

TABLE 11
PARAMETER SETTINGS FOR EACH BRANCH OF THE PROPOSED MBFN
Index Layer 1 Layer2 Layer3 Layer4
Layer Type Conv Conv Conv Conv
Receptive Field 3 X3 3 X3 3 X3 3 x3
Pading 1 1 1 1
Feature Map Number 32 32 32 32
Activation (a=0.2) PReLU PReLU | PReLU | PReLU
TABLE III
PARAMETER SETTINGS OF THE PROPOSED RGN
Index Layerl~Layer5 Layer6
Layer Type Conv Conv
Receptive Field 3 x3 3x3
Pading 1 1
Feature Map Number 32 1
BatchNorm Yes No
Activation PReLU (a=0.1) -
TABLE IV
PARAMETER SETTINGS OF THE PROPOSED DISCRIMINATOR
Index Layerl~Layer6 Layer7 Layer8
Layer Type Conv fc fc
Receptive Field 3x3 - -
Pading 1 - -
Feature Map Number 32 128-dim 1-dim
BatchNorm Yes - -
Activation PReLU (a=0.1) PReLU (a=0.1) Sigmoid
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