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A B S T R A C T

Flooding is the most common type of natural hazards that can interrupt crop growth and reduce production.
Current understanding of flood impact on crops is largely obtained from broad-scale studies without considering
the influence of localized variations. Due to the highly localized features of flooding, it is essential to develop an
effective and systematic approach to investigate and better understand the spatio-temporal varying flood dis-
turbances at fine spatial scales. Based on the pixel-based time series of Enhanced Vegetation Index (EVI) data,
two satellite-based flood disturbance detection indices (DIs), i.e. EVI and peak EVI, are developed to recognize
the difference between the signals induced by natural variations and instantaneous/non-instantaneous flood
impact in crop growth processes. To define flood impact, the actual and predicted normal values of temporal
trajectories of EVI and peak EVI during the crop growing seasons are compared to detect and remove the in-
terference from the crop’s intra-annual natural variations. A range of natural variations are considered to discern
the signal induced by the crop’s inter-annual natural variations. Furthermore, recovery of crops from flooding is
also considered by comparing the peak EVI during crop growing seasons to detect the final flood impact. Using
the Northeast China as a case study area, we successfully demonstrate the capacity of these two DIs to identify
spatio-temporal varying flood impact on crop production. The DIs also reveal positive response of crops to
extreme precipitation under certain conditions. Further analysis demonstrates the non-linear relationships be-
tween flood disturbances and terrain slope, distance from rivers, and flow accumulation area, which enable the
development of empirical regression models to sufficiently capture the variation of flood damage extent. The
research findings confirm that the two DIs proposed in this work are useful in detecting flood disturbances to
crops and facilitating informed decision-making in agricultural flood management.

1. Introduction

It is widely recognized that climate change has posed a great chal-
lenge to global environment and ecosystems in the 21st century and
beyond (Garcia et al., 2014; Seddon et al., 2016). The hydrological
cycle is expected to intensify under global warming (Allen and Ingram,
2002). Subsequently, extreme precipitation events will become more
frequent in many regions of the world, leading to more natural hazards
including flooding (Kadari et al., 2011; Schiermeier, 2011; Donat et al.,
2016; Taylor et al., 2017; Zhu et al., 2017). Floods arising from intense
rainfall may cause remarkable damage to crops, thus threatening local
and global food security (Rosenzweig et al., 2002; Kenyon et al., 2008;
Li et al., 2016; Yang et al., 2016; Di et al., 2017; Shrestha et al., 2017).

Current understanding of crop response to flooding is largely ob-
tained from broad-scale studies. For instance, Lesk et al. (2016)

evaluated the impact of historical flood events on cereal production on
a national basis across the globe. Similar studies have been undertaken
at a national scale (Rosenzweig et al., 2002; Piao et al., 2014; Gourdji
et al., 2015; Cobon et al., 2016), province/state scale (Lobell et al.,
2011; Subash et al., 2011; Zhang et al., 2015; Yang et al., 2016; Zhang
et al., 2016a, 2016b) and district level (Potopová et al., 2017; Shrestha
et al., 2017). Most of these studies conclude that extreme precipitation
and the resulting floods pose various degrees of negative effects on
agricultural production from the broad-scale perspective. The extreme
precipitation, however, can potentially offset flood-induced damage by
resolving the spatial and temporal discontinuity between water excess
and water deficit (Brindha and Pavelic, 2016). Floodwater harvesting
through integrated water resources management has received sig-
nificant attention in many regions across the globe (Li et al., 2011;
Eriyagama et al., 2014). Floodwater can be stored at the ground surface
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(e.g. reservoir) or in the subsurface (e.g. managed aquifer recharge) to
provide irrigation supplies for agricultural productions (Moges, 2004;
Pavelic et al., 2012; Saher et al., 2015), which may help mitigate the
flood loss to a certain extent. So despite the fact that the attack of
rainstorm or waterlogging more commonly causes crop failure, extreme
precipitation may increase production of crops through alleviating
water shortage under certain conditions. To some extent, the negative
flood disturbances may be offset or even surpassed by the positive ef-
fects across the whole area, which confirm the necessity of performing
fine spatial scale studies to more comprehensively investigate and un-
derstand the flood impact on crop production.

Flood impact on crops may present clear temporal and spatial var-
iations as influenced by localized weather and topographic conditions
(Thornton et al., 2014; Lesk et al., 2016; Chen et al., 2017). The loca-
lized factors that may influence flooding processes include precipita-
tion, evaporation, topography, vegetation, soil, river streams, and flood
control infrastructure (Merz et al., 2014). Hence, flood risk and impact
on crops naturally exhibit high spatial heterogeneity due to the com-
plicated interaction between these various localized factors. In recent
years, many experimental attempts have been reported to investigate
the crop response to waterlogging with controlled duration and depth,
providing basic understanding of the morphology, physiology, yield,
and recovery mechanisms for submerged crops (Xu et al., 2015;
Arguello et al., 2016; Zhang et al., 2016a, 2016b; Wang et al., 2017).
For effective flood risk assessment, however, it is challenging to ex-
trapolate the laboratory findings to the real-world applications due to
the scale effect and the lack of detailed spatial data revealing flood
characteristics (Yang et al., 2016). Field survey has been a traditional
approach to investigate flood impact on crop yield (e.g., Aryal et al.,
2016). But this is a time-consuming and labor-intensive task, making it
difficult, if not impossible, for large-scale applications. Considering its
utter importance for disaster management and preparedness, a more
effective and systematic approach must be developed to better under-
stand the spatio-temporal characteristics of flood impact on crop pro-
duction.

Remote sensing may often be the only feasible tool in terms of ob-
taining spatial and temporal field information to interpret flood dy-
namics (Haas et al., 2009; Ogilvie et al., 2015; Mohammadi et al.,
2017). Inundation detection using remote sensing technologies has
been a classical research topic in flood risk management. Different re-
motely sensed indices, which are usually related to moisture (e.g. open
water, moist soil or vegetation water), have been developed to map
flood areas or extents. In addition to detecting the flood extents, remote
sensing also has a potential for effectively monitoring pixel-based spa-
tial variation of crop growth conditions and yield at the local, regional,
national and global scales (Beeri and Peled, 2009; Beckerreshef et al.,
2010; Alemu and Henebry, 2013; Zhang and Zhang, 2016). Based on
the reflection characteristic of the green organs in crops, the vegetation
index as derived from remote sensing has provided a potential means of
indirectly estimating the stress status of crops (Jgpw and Hjcvan, 1996;
Franke and Menz, 2007; Mohammadi et al., 2017). Thus, if remote
sensing imagery with high revisit frequency and high image quality is
available to derive a detailed time-series of images to capture the flood
signals, it is feasible to effectively capture changes of crop growth vigor
and biomass and hereby measure pixel-based crop responses to flooding
over a large area.

Two attempts have been reported to use the difference of vegetation
index between the pre-flood and post-flood periods (Džubáková et al.,
2015) or between the flood year and harvest year (Chen et al., 2017) to
measure the flood damage extent. However, given that crops are
usually shallow rooted and respond rapidly to hydrothermal variations,
the magnitude of intra-annual and inter-annual variations of vegetation
greenness is relatively large in crop systems even without external
disturbances (Zhang et al., 2003; Sakamoto et al., 2005). The difference
of vegetation greenness between pre-flood and post-flood periods or
between the flood year and harvest year may contain signals reflecting

crop’s natural growth processes. It is therefore essential to distinguish
the signals caused by natural variations and flood impact when de-
tecting and defining flood disturbances. However, this has not been
considered in the previous studies.

To fill the aforementioned gaps in research and application, the
objective of this work is to develop an effective and systematic ap-
proach to distinguish the signals caused by natural variations and
flooding, and subsequently to investigate and better understand the
spatio-temporal varying flood disturbances at fine spatial scales. Two
satellite-based disturbance detection indices (DIs) are developed with
an aim to acquire the spatial-temporal characteristics of instantaneous
and non-instantaneous (integrated) flood impact on crop production on
a pixel basis over a large scale. The DIs will be further used to explore
and identify the key factors determining the crop loss induced by
flooding. This will help identify and confirm those areas that are most
vulnerable to flooding, and subsequently facilitate informed decision-
making in flood risk mitigation and management at different levels. The
proposed approach will be tested in the Northeast China, where the
severe flood events in 2005 and 2013 have led to huge agricultural
losses during the crop growing seasons.

2. Material and methodology

2.1. Conceptual model for identifying flood impact on crop production

Flooding may affect crop production and it is one type of terrestrial
disturbances that occurs outside the range of natural variations
(Mildrexler et al., 2009). It is crucial to correctly identify the dis-
turbances from the backdrop of natural variations when developing a
disturbance index (Mildrexler et al., 2007). To enable systematic agri-
cultural flood disturbance detection, two fundamental principles are
applied: (1) crops, when left undisturbed, will achieve maximum ve-
getation greenness in a specified environment; and (2) flood dis-
turbances will cause crops to have significantly different greenness.
Vegetation indices have been widely used as a proxy of vegetation
greenness for characterizing crop yield and net primary productivity
(Shi et al., 2017). Although a number of different indices have been
developed, the Normalized Difference Vegetation Index (NDVI) and the
Enhanced Vegetation Index (EVI) are the most widely used indicators to
monitor the conditions of different crops across the world (Son et al.,
2014). More recently, EVI has been demonstrated to be more effective
in monitoring crop growth than NDVI (Bernardes et al., 2012; Bolton
and Friedl, 2013; Zhang et al., 2014), due to the fact that EVI is more
sensitive to the variance in dense vegetation while NDVI may become
saturated (Rocha and Shaver, 2009). EVI is computed using red, near
infrared and blue reflectance bands with a practical range between 0
and 1. Absorption in the red band results in higher values of EVI. The
index is strongly related to the chlorophyll content and photosynthetic
activity and is suitable for monitoring crop growth dynamics (Huete
et al., 2002). Therefore, EVI is adopted in this study and calculated by
the following formula

= × − + × × +EVI 2.5 (R R )/(R 6 R -7.5 R 1)Nir Red Nir Red Blue (1)

where RNir, RRed and RBlue refer to the reflectance of the near-infrared,
red and blue bands of remote sensing images, respectively.

Flooding disturbs crop growth at a rate different from a range of
natural growth variations and subsequently has different impact on
crop production. Instantaneous disturbances caused by flash floods with
high flow velocity may result in an abrupt deviation from the vegeta-
tion index featuring natural growth processes. The vegetation index
following prolonged disturbances from those flood events caused by
e.g. continuous “plum rains” often deviates incrementally and returns
slowly to the normal conditions (crop recovery) after the wet stress has
passed. These features imply the necessity for a multi-pronged approach
to flood disturbance detection. Both of these instantaneous and non-
instantaneous responses can be effectively detected by tracking
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temporal trajectory of the vegetation index during the crop growing
seasons. The non-instantaneous response of crop yield can be surro-
gated by the vegetation index reflecting peak greenness. The maximum
vegetation index of crops has been demonstrated to be the most effec-
tive indictor in predicting crop yield (Rasmussen, 1992; Groten, 1993;
Bolton and Friedl, 2013; Rembold et al., 2013; Zhang and Zhang, 2016;
Duan et al., 2017). Thus crop yield loss may be evaluated through
analyzing the characteristics of the peak vegetation index of crops.

Detecting and quantifying flood impacts is challenging because crop
production is influenced by many factors, including weather and cli-
mate factors, as well as technological advances. The overall trend of EVI
and yield is increasing, which is mainly caused by technological ad-
vances; the fluctuations are mainly controlled by weather and climate
factors (Lu et al., 2017). Quantifying flood impacts on crop growth
needs to know the long-term EVI trend caused by technological factors.
This study adopts a linear regression model to identify the long-term
trend without external disturbances and acquire the expected normal
crop EVI influenced only by technological factors. Afterwards, the ac-
tual crop EVIs and the expected ones are compared to detect the
meaningful flooding effect on crop growth.

= +Y β β tt 0 1 (2)

where Yt is the crop EVI at year t, t is an independent variable, and β0
and β1 are the coefficients.

Given that the magnitude of intra-annual and inter-annual varia-
tions of vegetation greenness is relatively large in crop systems even
without external disturbances, it is essential to detect and remove the
natural variations of crops when developing a disturbance detection
index. In order to avoid the possible high intra-annual change asso-
ciated with the dynamic but natural crop growth possesses during the
crop growing seasons, we compare the actual and predicted normal
values of EVI. The time-series of the EVI and peak EVI during the crop
growing seasons are used to track the instantaneous and non-in-
stantaneous (integrated) effects, respectively. Here, the time-series of
the EVI mean the maximum value of the EVI for a certain period (16
days used in this study). Thus, the instantaneous variant of the dis-
turbance index (DI _i Inst) and the integrated disturbance index (DI )Inte

are defined as follows:

=DI _ VI / VI _i Inst i i no (3)

=DI VI / VI _Inte max max no (4)

where i represents the time period during a crop growing season, VIi is
the actual EVI during period i, VI _noi is the predicted normal EVI
without external disturbances during period i, VImax is the actual peak
EVI during a crop growing season, and VI _max no is the predicted normal
peak EVI without external disturbances during a crop growing season.

VI _noi and VI _max no can be derived from the predicted values of the
time-series of the EVI and peak EVI, which are obtained from their
respective regression-based models. Eqs. (3) and (4) are also presented
in the conceptual model as illustrated in Fig. 1. The disturbance indices
(DIs) are dimensionless parameters defined as the ratio of the vegeta-
tion indices between the current year and historical normal years. If a
given pixel is not disturbed, DIs tend to have a value of 1.0. However,
since the growth conditions of a cropland are typically not static, DIs
will vary within the range defined by the natural variations (indicated
by the shadowed grey area in Fig. 1), even without external dis-
turbances. When a flash flood event occurs, the vegetation index in the
affected area will decrease instantaneously to a value that is obviously
less than the multi-year mean. The negative effects induced by the flood
event (as shown in red in Fig. 1a) will be detected since it shifts outside
the range of natural variations. As the affected area recovers from the
flood impact, indicated by increasing vegetation index, the bi-direc-
tional nature of DIs will track the incremental change toward recovery
and the DI values will again fall inside the range of natural variations.
Similarly, the positive effects from extreme precipitation (as shown in

blue in Fig. 1a, larger than the multi-year mean) will also be detected
when the signal shifts outside the range of natural variations.

2.2. Ridge regression model for identifying influential factors controlling
flood damage extent on crop yields

After successfully detecting flood disturbances using the integrated
DI index, the damaged degree (DD, define as 1 – DIInte) can be obtained
for every negatively disturbed pixel with DIInte falling outside the range
of natural variations. Herein, the influential factors controlling the
damaged extent on crop production are investigated and discussed.
These factors may include flow accumulation area (F), terrain slope (S)
and distance from river stream (D), which have been verified as the
three dominant parameters in assessment of flood risk (Kazakis et al.,
2015). The detailed introduction on these three factors can be seen in
the Supporting material.

The relationships between these three influential factors and the
yield damaged degree are established through analysis of data dis-
tributions. To examine the interactive effects of the influential factors
on the flood damage extent, the data are further analyzed using a Ridge
regression model, which is chosen because of the possible existence of
collinearity in the variables. Ridge regression has been widely used to
handle collinearity in multivariate regression by penalizing the size of
the regression coefficients (Hoerl and Kennard, 1970). Ridge regression
sacrifices small bias for large reductions in the variance of the predicted
values (Simpsona and Montgomery, 1996). The standard error of the
estimated regression coefficients is smaller than that of the ordinary
least squares, providing estimated results that are more stable and

Fig. 1. The DIs algorithm and conceptual model for detecting the flood
disturbance on crop production. The upper panel is for the instantaneous
disturbance index and the lower panel is for the integrated disturbance index.
The shadowed area represents the range of natural variations.
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closer to the true values. The detailed introduction on Ridge regression
can be found in the Supporting material. In this study, the Ridge re-
gression model is developed using the ridge package in R.

2.3. Study area and events

Northeast China (including Heilongjiang, Jilin, and Liaoning pro-
vinces) is one of the most important grain producing areas in China
(Fig. 2). The region has a total area of approximately 0.79 million
square kilometers, with longitude extending from 120°E to 135°E and
latitude spanning from 38°N to 53°N. In the Northeast China, 45.46% of
the total area is planted with crops (Cong et al., 2017). The crop sys-
tems mainly include corn, rice, and soybean and are typically featured
with single-cropping every year (Chen et al., 2012). These crops are
sown in late April and harvested by the end of September. The land-
scape is dominated by mountains and plains, with the Changbai
Mountain in the eastern fringe, Lesser Khingan Mountains to the north
and Great Khingan Mountains to the west. The Sanjiang, Songnen and
Liaohe plains, distributed from the north to the south, house most of the
farmlands in the region, which are famous for rich soil. The region is
dominated by a continental monsoon climate and the annual rainy
seasons (July to September) overlap with the crop-growing seasons
(April to September). Therefore, the plain areas along the middle and
lower reaches of the major rivers are particularly vulnerable to
flooding, which may adversely affect crop production (Yang et al.,
2007).

Annual precipitation of the Northeast China increases from north-
west (450mm) to southeast (1070mm) (Liu et al., 2016), with an an-
nual average varying from year to year. As shown in Fig. 3, the annual
average crop area affected by flooding was 9,584 km2 (approximately
5.4% of the total cropland area) from 2000 to 2015. Particularly in
2005 and 2013, 20,237 km2 (12.6% of the total cropland area) and
34,189 km2 (17.5% of the total cropland area) of the croplands were
respectively suffered from flood attacks. The flood events in 2005 and
2013 mainly happened in July and August, coinciding with the key
period for crop growth. According to official records, the external dis-
turbances to the crops were dominated by flooding in these two years.
This provides an ideal case study to investigate crop response and
production loss caused by flooding and hence the current study will

focus on 2005 and 2013.

2.4. Data acquisition

The Moderate Resolution Imaging Spectroradiometer (MODIS),
with its high frequent sampling (twice-daily) and relatively long data
archive (since 2000 to now) across the globe, provides a unique dataset
to explore crop response to flooding. However, frequent interference of
clouds during the rainy days makes it difficult to acquire a daily series
of flood images over a single flood event. Thus the 16-day MOD13Q1
version 6 product is used, which comprises the 16-day, global enhanced
vegetation index (EVI) at 250m resolution for the period from 2000 to
2016 (Didan et al., 2015). The MOD13Q1 version 6 product is provided
by the NASA Earth Observing System (EOS) (ftp://ladsweb.nascom.
nasa.gov/allData/6/, Didan, 2015). The 16-day product is a maximum
value composite (MVC), which selects the least cloud-atmosphere
contaminated pixels and also tends to select the closest near-nadir view
(Huete et al., 1999). The MOD13Q1 reliability layer is used to remove
all unreliable pixels (value > 1) before DIs are calculated.

The cropland area is obtained from the GlobCover 2009 dataset
with 300m resolution for the period between January and December

Fig. 2. The study area. The left panel shows the position of the study area in China. The right panel shows the spatial distribution of cultivated land in Northeast
China.

Fig. 3. The percentage of flood-affected crop areas among the total cropland
area in the Northeast China during 2000–2015. Data are received from the
National Bureau of Statistics of China.
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2009, which is developed from the Medium Resolution Imaging
Spectrometer (MERIS) data and available from the European Space
Agency (Arino et al., 2012). According to Liu et al. (2014), croplands in
the Northeast China significantly increased from late 1980s to
2000mainly due to the reclamation of forests, grasslands, and unused
lands, but the croplands remained almost unchanged after 2000. Thus,
the cropland area obtained in 2009 is used in the current study, cov-
ering the period between 2000 and 2016. Also this study adopts the
Shuttle Radar Topographic Mission (SRTM) digital elevation model
(DEM) data, which has a spatial resolution of 90m (Farr et al., 2007).
River networks and flow accumulation maps with a 15 Arc-Second re-
solution are extracted from the HydroSHEDS datasets (Lehner et al.,
2008). The GlobCover 2009 data, DEM and flow accumulation maps are
resampled into a pixel size of 250m×250m using the nearest
neighbor algorithm in order to match the spatial resolution of the
MODIS EVI product. Daily precipitation data from 133 meteorological
stations is obtained from the National Climate Center (NCC) of the
China Meteorological Administration (CMA), which is used for driving
a two-dimensional hydraulic model combined with the SCS-CN hy-
drological model to accomplish the flood simulation and the spatial and
temporal quantification of flood parameters (see Supporting material
Methods). Additionally, the provincial flood-affected crop areas for the
period from 2000 to 2015 are collected from the National Bureau of
Statistics of China. Herein, the flood-affected crop areas are defined as
the agricultural lands with more than 10% of the expected crop yield
being affected by floods (Zhang et al., 2016a,b). Any flood-impacted
cropland areas with crop yield loss above 10% will be recorded in
disaster dataset at the provincial scale. City-level crop yield statistics in
Northeast China from 2001 to 2013 are collected from the data col-
lection website (http://www.soshoo.com.cn/index.do).

3. Results

3.1. Spatial characteristics of flood disturbances on crop production

The relationship between the peak EVI and crop yield is first in-
vestigated, which is the foundation of computing the DIs. The peak EVI
in each year derived from multi-temporal MODIS imagery in associa-
tion with crop yield data are used to develop empirical models for each
city to corroborate the subsequent analysis based on peak EVI. From the
results (see Supporting material Fig. S1), the peak EVI has a significant
linear correlation with the crop yield in 19 of 22 cities. There are no
significant correlations in Jilin City, Changchun City and Panjin City.
On the whole, the results of the linear models based on peak EVI can
sufficiently capture the yearly crop yield variation in Northeast China.
Subsequently, the DIs are computed from the MODIS MOD13Q1 data
during the crop growing seasons (April to September) for the period
from 2000 to 2016 across the whole Northeast China.

Fig. 4 presents the 2005 and 2013 integrated DI (DIInte) results
across the cultivated lands of the Northeast China. The flood-disturbed
areas detected by the DIInte are verified against the official statistics
released by the government (Table 1). As mentioned before, the growth
conditions of the croplands will vary within a natural variation range
even without external disturbances. The standard deviation from the
DIInte of historical years without disturbances can be used to define the
natural variation range (Mildrexler et al., 2009). In the current case
study, it is found that one standard deviation of DIInte is within 10% of
the mean in 91% of the entire agricultural areas under consideration.
Meanwhile, the National Bureau of Statistics of China adopts 10% loss
of the expected crop yield as the threshold for flood damage. Any crop
areas with flood loss above the threshold are recorded in the Bureau’s
disaster dataset. Thus, we define the natural variation range as± 0.1 of
the normal value without external disturbances (i.e., 0.9–1.1). There-
fore, croplands with DIInte less than 0.9 are considered to be negatively
disturbed by flooding. Based on this criterion, 11,751 km2 and
25,350 km2 of croplands across Heilongjiang are detected to be

respectively impacted by the 2005 and 2013 floods using the DIInte,
which are very close to flood-affected area statistics. The detected
disturbed areas also agree well with the flood-affected area statistics in
Liaoning and Jilin, although where the flooding damage was not as
serious as that in Heilongjiang. As a whole, the errors between the
detected areas and the official statistics are less than 15% for all three
Northeast provinces.

Besides, we use the two-dimensional hydraulic model coupled with
the SCS-CN hydrological model to simulate the spatio-temporal dy-
namics of flood evolution over the upstream watershed of Songhua
River. The upstream watershed of Songhua River occupies 70% of the
cultivated land in the Northeast China and is used as the computational
domain (see Supporting material Fig S2). The detail of the two-di-
mensional hydraulic model and the SCS-CN hydrological model can be
seen in Supporting material. The simulation results are shown in Fig S2.
According to the simulation results, 78% and 69% of the watershed
areas were inundated with water depth over 10mm in 2005 and 2013,
respectively. Combining the flood disturbance results based on remote
sensing imagery and flood simulation via hydraulic modeling, the dis-
turbance condition and flood characteristics can be gained detailedly
for each pixel. Then we counted the distribution of maximum water
depth for these negatively disturbed pixels within the watershed (Table
S1). According to the count results, 92.9% and 83.9% of these nega-
tively disturbed pixels were inundated with water depth over 10mm in
2005 and 2013, respectively. And 81.4% and 70.1% of them were in-
undated with water depth over 50mm in 2005 and 2013, respectively.
Thus, the vast majority of these negatively disturbed pixels were indeed
hit by devastating floods. And given the external disturbances to the
crops were dominated by flooding in these two years. The results in-
directly indicated that our disturbance results are reliable and the flood
disturbance can be effectively detected using the proposed DIInte.

In addition to comparing with the statistical data, the spatial char-
acteristics of the negatively disturbed croplands have also been in-
vestigated. According to Garssen et al. (2015), Akbari et al. (2016),
Gigović et al. (2017) and Jafarzadegan and Merwade (2017), riparian
zones are usually more vulnerable to flood attacks. From Fig. 4, most of
the pixels that are negatively disturbed by flooding (in red and yellow)
are distributed along the river streams. In order to quantitatively
evaluate the results, the distance from these negatively disturbed pixels
to their nearest rivers is calculated and further analyzed (Fig. 5 and
Table 2). For the 2005 flood event, 31% and 79% of the pixels with
DIInte less than 0.9 are within 500m and 2000m from rivers, respec-
tively. For the 2013 event, 32% and 80% of the negatively disturbed
pixels are respectively within 500m and 2000m from river streams. As
a whole, the negatively disturbed pixels are concentrated on the ri-
parian zones or floodplains for both 2005 and 2013 floods. In previous
studies, Tehrany et al. (2015) showed that flooding mainly happens
near to river banks and the distance from river streams within 1700m is
closely correlated with flood impacts. Through analysis of the records of
historical floods in the Rhodope-Evros region, Greece, Kazakis et al.
(2015) also indicated that areas near river networks are highly vul-
nerable to flood hazard and the flood hazard significantly decreases in a
distance > 2000m from river networks. Thus the spatial distribution
of the negatively disturbed crop areas is consistent with the previous
studies of potential flood-prone areas, as expected. This indirectly va-
lidates the detected flood-disturbed areas and also the effectiveness of
the DIInte developed in this study for flood disturbance detection.

In addition to the negative disturbances from flooding, the positive
response of the peak EVI of the crops can also be observed in the de-
tection results as shown in Fig. 4. 21.7% and 6.8% of the cultivated
lands showed positive response of the peak greenness with DIInte greater
than 1.15 in 2003 and 2015, respectively. We counted the distribution
of maximum water depth for these pixels with positive response within
the watershed (see Supporting material Table S1). According to the
results, 95.1% and 88.5% of these pixels were inundated with water
depth over 5mm by the 2005 and 2013 floods, respectively. However,
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only 59.1% and 43.8% of them were inundated with water depth over
50mm. Thus, the vast majority of these pixels with positive response
happened where water flow came into being or went through while
water flow was shallow. Traditionally, it is widely recognized that ex-
treme precipitation events have negative effects (e.g., Kent and
Johnson, 2001; Samantaray et al., 2015; Kotera et al., 2016), or no
obvious effects (Pantaleoni et al., 2007; Lesk et al., 2016) on crop
production. The detected positive response of the peak greenness to
extreme precipitation events in some specific areas have not been
previously investigated and analyzed. We infer that the main reason for
this inconsistence is that the previous studies tend to treat the affected
areas as a single entity and focus only on total flood effects in the af-
fected areas without considering localized spatial variations. In the
current study, we investigate the flood response for individual fields

(i.e., every 250m×250m pixel) within the whole watershed to take
into account spatial variations. Whilst being a major type of nature
hazards leading to loss of crop production in the damaged areas, ex-
treme precipitation events may also have positive results, at least lo-
cally, in terms of increasing the availability of water resources or in-
creasing soil moisture, which is favorable for crop growth under certain
conditions. This will be further analyzed and verified in next section.

3.2. Temporal characteristics of flood disturbances on crop growth

Using the instantaneous DI as introduced in Section 2.1, a time
series of 16-day composite DI _i Inst during the crop growth seasons in the
Northeast China can be produced to provide information on crop
growth changes between before and after flooding. The crop growth
season is derived from the cropping calendar (http://zzys.agri.gov.cn/
nongshi.aspx). In this section, the year of 2005 is taken as an example to
facilitate further analysis and discussion of the temporal characteristics
of flood disturbances. According to the China National Commission for
Disaster Reduction, two extremely flood events happened in the
Northeast China in 2005. A rainstorm hit the central south Heilongjiang
on 27th July 2005 (China National Commission for Disaster Reduction,
2005a), followed by another extreme flood event between 10th and 14th

August, which caused disastrous consequences for agriculture in all
three Northeast provinces of China (China National Commission for
Disaster Reduction, 2005b). DI _i Inst is calculated for period 193 (the
193rd day to 208th day, and before these two flood events) and 209 (the
209th day to 224th day, and after the first event and during the second
event) of the year from the MODIS 16-day composite, as presented in

Fig. 4. Flood disturbance detection results obtained from the integrated DIs based on the comparison between the actual peak EVI and predicted normal peak EVI in
the Northeast China. The left panel shows the result of year 2005. The right panel shows the result of year 2013. (For interpretation of the references to colour in the
text, the reader is referred to the web version of this article.)

Table 1
Validation of the flood disturbance areas detected by the integrated DIs based
on the comparison between the actual peak EVI and predicted normal peak EVI
against official province-level statistics of the flood-affected crop areas.

Province Year 2005 (km2) Year 2013 (km2)

Statistics Remote
sensing

Error (%) Statistics Remote
sensing

Error (%)

Heilongjiang 13,146 11,751 −10.61 26,553 25,350 −4.53
Jilin 3645 3554 −2.50 4273 4338 1.52
Liaoning 3447 3374 −2.12 3363 3631 7.97
Total 20,237 18,679 −7.70 34,189 33,319 −2.54
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Fig. 6a and b. The instantaneous DI is observed to decrease in most of
the areas. However, in the northern regions (i.e., Songnen plain), the
instantaneous DI increases after flooding.

Comparison of results between the flooding and non-flooding per-
iods, i.e., the ratio between the result of period 209 and that of period
193, helps us to more explicitly recognize the crop’s direct response to
flooding. Fig. 6c shows the ratio of DI _i Inst between after and before
flooding, i.e., DI _209 Inst to DI _193 Inst. As illustrated in Fig. 6c, the re-
sponse of crop growth to flooding presents obvious spatial pattern
across the floodplain. In order to facilitate the analysis, the floodplain is
divided into four zones, according to different floodplain responses.
There are 71.0% and 67.8% of the pixels with decreased instantaneous
DI in zone 2 and zone 4, respectively. The decreased instantaneous DI
indicates that flooding causes negative impact on crop growth. In both
zones, flooding hinders crop growth and subsequently reduces vigor of
the crops. Zone 1 is mainly located in the Midwest of Heilongjiang with
68.7% pixels having increasing instantaneous DI. Zone 3 shares similar
characteristics with zone 1 with 66.0% pixels having increasing in-
stantaneous DI. Although the maximum daily rainfall in certain stations
in zone 1 and zone 3 is recorded to be as high as 30mm or over, crops

are shown to grow better during and after flooding in most areas, ex-
cept for the riparian zones around rivers. To further analyze the rea-
sons, it is found that Heilongjiang experienced higher temperature and
drier weather than usual from January to June in 2005, causing severe
drought in the whole province (Xiao and Xu, 2006). Subsequently, the
crops were negatively disturbed by droughts, with 26% of the pixels
having DI _193 Inst (corresponding to July) less than 0.9 in zone 1. With
the increased rainfall in July, the drought had been eased, as demon-
strated by less negatively disturbed pixels in DI _209 Inst, leading to po-
sitive flood impacts.

3.3. Influential factors controlling the flood damage extent on crop yields

After successfully using the integrated DI index to identify flood
disturbances, the damaged degree (DD, define as 1 – DIInte) can be
obtained for every negatively disturbed pixel with DIInte < 0.9. Herein,
the influential factors controlling the damaged extent on crop yield are
investigated and discussed. The average values of influential factors are
calculated for those pixels with the same yield damaged degree, i.e. the
average values of the three factors (including terrain slope, distance
from rivers, and flow accumulation area) against every 1% yield loss
ratio. Flow accumulation area is defined as the upstream area draining
into the pixel(s) under consideration, which is extracted from the
HydroSHEDS datasets. Slope is topographic slope and is calculated
based on DEM in ArcGIS. The distance from rivers is defined as the
distance of the pixel to its nearest river stream, which is calculated in
ArcGIS. In total 90 groups (from 10% to 99% at a 1% interval) of data
are selected. The relationships between the three influential factors and
the yield damaged degree are established respectively according to the

Fig. 5. Spatial distribution of crop areas negatively disturbed by floods in the floodplains in the Songnen plain. The color represents the distance to the nearest river.
(For interpretation of the references to colour in the text, the reader is referred to the web version of this article.)

Table 2
Percentage of crop areas disturbed by floods within a certain range to the
nearest river (%).

Distance (m) 200 500 1000 1500 2000 3000

Year 2005 14 31 52 68 79 93
Year 2013 14 32 53 68 80 94

H. Chen, et al. Agricultural and Forest Meteorology 269–270 (2019) 180–191

186



data distributions and illustrated in Fig. 7. These relationships are not
linear and may lead to several interesting conclusions. Firstly, in Fig. 7a
and b, it is shown that all serious damages with a damaged degree >
40% (indicated by red points) happen in locations with a terrain slope
less than 0.40°. This implies that only the crops in those areas with a
slope less than 0.40° may experience amplified responses to flood dis-
turbances and 0.40° may be defined as the critical terrain slope to
trigger serious flood-induced crop failure in the Northeast China. The
reason may be that, in the landscapes with a terrain slope less than
0.40°, the driving force, i.e. gravity, to move the floodwater to down-
stream becomes critically small and the floodwater accumulates to form
serious waterlogging during a flood event. Secondly, as indicted in
Fig. 7a and b, the damaged degree is highly and linearly correlated with
the slope (R2≥ 0.94) when the damaged degree is below 40%. Once it
exceeds the threshold of 40%, the damaged degree almost has no cor-
relation with the slope. Thus for the moderate damage state, lower
terrain slope leads to more serious crop damage. Finally, from Fig. 7c-f,
the damaged degree is positively related to the flow accumulation area
and negatively to the distance from stream, as it is expected.

The data are further analyzed to examine the interactive effects of
the influential factors on the flood damage extent. Pearson’s correlation
coefficient (r) between the slope and the flow accumulation area is
−0.38 and −0.33 for year 2005 and 2013, respectively. The r between
the slope and the distance from river stream is −0.61 and −0.75 for
year 2005 and 2013, respectively. The r between the distance from
river stream and the flow accumulation area is 0.70 and 0.68 for year
2005 and 2013, respectively. The condition index is 17.35 and 40.22
for year 2005 and 2013, respectively. If the condition index is 15,
multicollinearity is a concern; if it is> 30, multicollinearity is a very
serious concern (Midi et al., 2010). Thus, a Ridge regression model is
used due to the collinearity in the influential factors. Given the non-
linear relationships between the influential factors and the damaged
extent (Fig. 7), the Ridge regression model is built using the natural

logarithm of the current values. The regression equations are developed
for the 2005 and 2013 events respectively as follows:

= +Ln (DD) 8.28-0.44Ln(S)-0.61Ln (D) 0.26Ln (F) (5)

= +Ln (DD) 9.22-0.50Ln(S)-0.68Ln (D) 0.27Ln (F) (6)

where DD is the damaged degree in %; S is the slope in minutes; D is the
distance from river stream in meters; and F is the flow accumulation
area in square kilometers.

All estimated coefficients pass the significance tests with a t-statistic
above the significance level of 0.05. The Ridge regression estimate
clearly shows that the damaged extent increases with reduced slope (S)
and distance from river stream (D) and increased flow accumulation
area (F). The actual and model predicted damages are compared and
showed in Fig. 8. Most of the data points are in close proximity to the
1:1 line, which indicates that the empirical regression model based on
the three variables may sufficiently capture the varying extent of flood
damage on crops across the Northeast China.

4. Discussion

Over agricultural areas, there are many natural disasters that can
cause great damage to crops, with the possibility to reduce grain pro-
duction and destabilize food systems (Lesk et al., 2016). Our aim of this
study is to investigate the spatio-temporal varying flood disturbances at
fine spatial scales due to the highly localized features of flooding. The
proposed method is tested in the selected flood years of the Northeast
China. During the selected flood years, the natural disasters that hit
crop production for the study area were mainly extreme flood events.
So the disturbance factor is simple and clean to some degree. And we
have verified our disturbance detected results with spatial information
of flood inundation via 2-D hydraulic model. It is likely, however, that
there may be other disturbance factors that happen locally and impact
crop growth even in flood years when the proposed method is applied

Fig. 6. Flood disturbance detection results obtained from the instantaneous DIs based on the actual EVI and predicted normal EVI during the same period in the
Northeast China. The left panel shows the result of period 193 (the 193rd day to 208th day) in 2005. The middle panel shows the result of period 209 (the 209th day to
224th day) in 2005. The right panel shows the ratio between the result of period 209 and that of period 193 in 2005.
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in other cases. So the disturbance results need to be handled sensitively
and should be interpreted cautiously. It is better to first get spatial in-
formation regarding flood characteristic and progress to help recognize
flood-impacted areas. Recently, remote sensing imagery (e.g.,
Mohammadi et al., 2017) and 2-D hydraulic model (e.g., Chen et al.,
2017) have provide the possibility for characterizing flood dynamics of
large-scale floodplains. With the aid of these tools, the flood-impacted
areas can be effectively identified and subsequently the disturbance
detection results can be interpreted to obtain more reliable conclusions.

Previous studies have demonstrated that satellite-derived vegetation
indexes are well correlated with ground biomass productivity (e.g.,

Hansen and Schjoerring, 2003; Jin et al., 2013; Marshall and
Thenkabail, 2015). However, one limitation of using vegetation indexes
to estimate biomass productivity is that they asymptotically saturate in
high biomass (i.e., vegetation indexes become insensitive at high values
of biomass productivity). Although EVI is more responsive to canopy
structure variations and has improved sensitivity than other vegetation
indexes (such as NDVI) in high biomass (Huete et al., 2002; Chen et al.,
2006; Potithep et al., 2013), the saturation problem for EVI can't be
completely solved (Lawrence et al., 2014). This problem may result in
an underestimation of ecosystem productivity in dense biomass areas,
which may influence the quantification of biomass productivity in high

Fig. 7. The relationship between the influential factors and crop damaged degree in the Northeast China. The relationship is measured using the regression equation
with maximum coefficients of determination (R2). The left panel is obtained for 2005 and the right panel for 2013. (For interpretation of the references to colour in
the text, the reader is referred to the web version of this article.)
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agricultural biomass areas during undisturbed years. But it has small
influence on the quantification of agricultural biomass productivity
when the crop areas are negatively by flood disturbances, which do not
affect us to recognize these flood-affected areas. Besides, crop yield
depends on total crop biomass and the proportion of that biomass al-
located to grain (Peng et al., 2004). Thus, the ratio of the EVI between
the flood years and expected normal year cannot be viewed as the direct
comparison on biomass productivity and actual crop yield with physical
meaning and can be interpreted as a measure of flood impact, which
just helps us understand the spatial-temporal characteristics of flood
impact on crop growth.

Considering that no significant change has occurred in cropland
areas in Northeast China during the study period, land use (cropland)
change is not considered in our study. But given that it is impossible to
completely avoid land use (cropland) change, one crop land cover data
used for representing the conditions during 2000 to 2016 can still bring
about some errors for the flooding disturbance detection results. And
the GlobCover 2009 dataset used for extracting the cropland area has
70% overall accuracy under 99% confidence (Bontemps et al., 2011).
The classification errors in GlobCover 2009 dataset deteriorate the ac-
curacy of the flooding disturbance detection results. Thus, when the
approach developed in this study is applied to other areas with sig-
nificant land use change (e.g., transformation of cropland areas to built-
up areas), the signal from land use change may seriously contaminate
the detection results and the interference must be first eliminated. The
high-precision cropland patterns may be examined in every year to
extract the unalterable cropland areas. Applying the current approach
only to these unalterable areas, the interference from land use change
can be eliminated and the validity of the approach in detecting flood
disturbances from natural variations can be ensured.

Corp growth requires water, nevertheless excess water that appears
during submergence or waterlogging is detrimental or even lethal.
Excess water causes crops to suffer the stresses of limited gas diffusion,
soil nutrients effusion, mechanical damage, and increased susceptibility
to diseases and pests (Setter et al., 1997; Ram et al., 1999). Previous
studies have reported various adverse effects of flooding on crops,
which vary with crop type, crop genotype, environmental conditions,
growth stage when flooding occurs, flooding duration and severity. In
Northeast China, the crop systems mainly include corn, rice, and soy-
bean. Rice, unlike other crop plants, has good adaptive traits for tol-
erance of excess water stress (Nishiuchi et al., 2012). Rice can form the
longitudinal interconnection of gas spaces, which realizes internal
aeration of shoot and roots (Colmer, 2003; Pedersen et al., 2009). Thus,
it is expected that rice could be less affected by these flood events.

However, growth and yield of most other crops would be impeded
under the stress of excess water. For example, when soil moisture ex-
ceeds 80% of field capacity, corn growth and yield would be greatly
reduced (Chen et al., 1988). Excess water can also result in injury or
death to soybean. According to previous study, most soybean cultivars
under the stress of continuously saturated soil averaged 40% less yields
than furrow-irrigated soybeans (Purcell et al., 1997; Rhine et al., 2010).
So corn and soybean in Northeast China are expected to undergo ne-
gative effects of flooding. However, in this study, we do not have
available crop pattern map as mask to distinguish crop types for such a
large-scale areas, thus it is hard for us to survey or verify the responses
of different crop types to flooding. Further work is still needed to ex-
plore the different sensitivities of crop types to flooding.

Agriculture is one of the economic sectors that are most affected by
extreme weather events, and doubtlessly most vulnerable due to the
dependency of rural communities in developing regions. Extreme
weather events are considered one of the most likely agricultural pro-
duction risks over the next ten years (WEF, 2015). Flooding arising
from intense rainfall may cause remarkable damage to crop production
in specific sites. At the same time, water variability that intense rainfall
associated with creates opportunities for water resource supply and
storage, which can provide significant socio-ecological benefits for
agricultural production. Since extreme precipitation events can be a
natural and beneficial process, managing them is not about eliminating
them, but rather minimizing risks and maximizing the benefit they
provide. And due to strong spatial heterogeneity of flood impact, site-
level knowledge on the field deployment of flood risk management is
essential and flood risk management measures should be site-specific.
Through the investigation of the spatio-temporal varying flood dis-
turbances at fine spatial scales in this study, it is possible to provide
policymakers with site-specific scientific information to develop effec-
tive flood risk management and adaptation interventions to protect the
most vulnerable sites.

5. Conclusions

A simple, efficient, and scalable approach has been proposed and
tested for detecting flood disturbances on crop production. The ap-
proach takes into consideration the interference of natural variations
during the crop growth processes in processing flood impact signal.
Two disturbance detection indices (DIs) are designed to track the dis-
turbance process and integrated effects of flooding on crops on a pixel-
by-pixel basis. The advantage of the new disturbance detection ap-
proach is illustrated through the provision of pixel-based spatial

Fig. 8. Correlation between the actual and predicted damaged degrees (DD) for: (a) 2005; (b) 2013.
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information on flood disturbed locations and extents, which is validated
against the provincial statistics and is consistent with spatial char-
acteristics of fluvial floods. The DIs successfully capture the response of
crop systems to external disturbances, in terms of both positive and
negative effects, providing a powerful tool for comprehensive flood
disturbance detection and analysis. Using the detection results, stake-
holders and decision-makers can locate the most vulnerable areas and
develop proactive strategies in agriculture flood management.

It should be also noted that the integrated DI derived from the crop
peak EVI can effectively detect the disturbances of floods happening
before crop greenness reaches the peak value; however, it is less ef-
fective in assessing those flood events taking place during the crop’s
mature stages. Therefore, future work is still needed to develop effec-
tive methods for assessing flood impact on crop production after the
crop peak greenness is passed.
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