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Cylindrical particles are ubiquitous in nature and industry, and a cylinder is a representative shape
of rod-like particles. However, the disordered packing results of cylinders in previous studies are
quite inconsistent with each other. In this work, we obtain the MRJ (maximally random jammed)
packings and the MDRPs (maximally dense random packings) of perfect cylinders with the aspect
ratio (height/diameter) 0.2 ≤ w ≤ 6.0 using the ASC (adaptive shrinking cell) algorithm and the
IMC (inverse Monte Carlo) method, respectively. The optimal aspect ratio corresponding to the max-
imal packing density is w = 0.9 in the MRJ state, while the value is w = 1.2 in the MDRP state.
Then we investigate the evolutions of packing properties of perfect cylinders under densification
and crystallization. We compare the different final packing states generated via the two methods
with different compression rates and order constraints. In the densification procedure, we gener-
ate jammed and random packings of cylinders with various compression rates via the ASC and
IMC method, respectively. When decreasing the compression rate, we find that the packing den-
sity increases but the optimal w remains the same in both methods. In the crystallization procedure,
the order constraint in the IMC method is gradually released which means the degree of order in
the packings is allowed to increase, and we find that the optimal w shifts from 1.2 to 0.9 while
the packing density increases as well. Meanwhile, the random packings evolve into the jammed
packings in the crystallization procedure which reflects the competition mechanism between the ran-
domness and jamming. These results also indicate that the optimal w is solely related to the degree
of order in the cylinder packings but not determined by the protocol or packing density. Further-
more, a uniform shape elongation effect on the random-packing densities of various shaped particles
is found via a new proposed definition of the scaled aspect ratio. Finally, a rough linear relation-
ship between the mean and standard deviation of the reduced Voronoi cell volumes is obtained only
for the random packings. Our findings should lead to a better understanding toward the jammed and
random packings and are helpful in guiding the granular material design. Published by AIP Publishing.
https://doi.org/10.1063/1.5049562

I. INTRODUCTION

Packings of rod-like particles are ubiquitous in nature
and arise in a variety of applications. The packings of cylin-
drical particles attract great interest because of their wide
application in chemical industry, liquid crystals, and fibrous
materials. A cylinder is often characterized by the aspect ratio
w = L/D, where L and D are the length and basal diame-
ter, respectively. The densest known packing of cylinders in
three-dimension space can be regarded as the densest ordered
packing of circles in two-dimension, and the maximum pack-
ing density is π/

√
12 ≈ 0.9069.1 Kusner found that the

upper bounds of the packing density for circular cylinders
with a high aspect ratio (w ≥ 48.3267) are π/

√
12 + 5/w,

but they did not give the corresponding structure.2 Mean-
while, the phase behaviors of cylinders change significantly
with different aspect ratios. Veerman and Frenkel3 found

a)Author to whom correspondence should be addressed: lsx@pku.edu.cn

that disk-like cylinders with an aspect ratio of about 0.2
appeared to exhibit an orientationally ordered phase with
a cubic symmetry, even though these particles themselves
have a cylindrical symmetry. This phenomenon was also dis-
cussed by Duncan et al.,4 and the phase diagram of short
cylinders was given by Mejia.5 To determine the optimal
aspect ratio for which the packing might reach a cubatic
phase, Blaak et al.6 calculated the ratio of the excluded vol-
umes of perpendicular and parallel orientation and found the
minimum at w ≈ 0.886. They also found that freely rotat-
ing cylinders with w = 0.9 exhibited the cubic phase with
a weak but significant, fourfold orientational order. How-
ever, this structural phase transition is not first order,6 and
the dense packings for slender cylinders exhibit a nematic
phase.7,8

The disordered packings of cylinders have been systemat-
ically studied via experiments,9–21 simulations,14,18,21–28 and
theoretical studies11,29,30 since 1970s. The aspect ratio w of
the cylinders studied varies from 0.1 to 100, and some com-
mon conclusions have been drawn. As shown in Fig. 1, the
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FIG. 1. The densities of disordered packings of cylinders in previous studies.
The inset shows the details of the rectangular region surrounded by blue dashed
lines.

packing density ϕ first increases with the increase of w for
disk-like cylinders (w < 0.7). Then the ϕ reaches a maximum
near the shape of an equilateral cylinder (w = 1.0), but the peak
location of ϕ is not uniform between these studies. Finally,
the ϕ decreases with the increase of w for slender cylinders
(w > 3.0). Especially, the density of the random close pack-
ing (RCP) of the equilateral cylinder (w = 1.0) was within
0.6–0.71,10,12,15–17,25,27 as a result of the ambiguous defini-
tion of the RCP. Furthermore, some theoretical and empirical
formulas were given to predict the disordered-packing densi-
ties of disk-like or slender cylinders. From the liquid-crystal
theory, Evans and Gibson29 presented a basic formula for the
RCP densities of slender cylinders as ϕ = k/w, where k is a
constant. Theoretical computations showed that k = 4, while
a fit to available experimental data gave k = 5.3. Philipse30

also deduced this basic formula from the perspective of the
excluded volumes, and the constant k in their work was about
5.4. Parkhouse and Kelly11 used a combination of geometric,
probabilistic, and empirical arguments to obtain a general for-
mula for the random-packing densities of slender cylinders in
the form ϕ = 2 ln(w)/w. Zou and Yu12 correlated the experi-
mental data as a function of particle sphericity ψ (defined as
the ratio of the surface area of a sphere having the same volume
as the particle to the surface area of the particle) and obtained
an empirical equation for the porosities ε = 1 − ϕ of loose
and dense disordered packing of cylinders (w > 1.0) and disks
(w < 1.0).

However, the optimal aspect ratio w, where the maximal
ϕ is obtained, is still not well discussed. As can be seen in
the inset of Fig. 1, the results from literature studies are con-
fused. It is difficult to obtain the optimal w via experiments
because of their low precision and high cost. With computer
simulations, Zhang24 used a collective rearrangement (CR)
algorithm to obtain the dense random packings of cylinders,
and they found the maximal ϕ ≈ 0.6589 at w = 1.2. However,
Zhao et al.26 found the maximal ϕ ≈ 0.7055 at w = 0.9 via
an improved relaxation algorithm. We can see the distinct val-
ues of the optimal aspect ratio corresponding to the maximal
packing density in these studies. Meanwhile, the packing den-
sities of Zhang’s results are much lower than those of Zhao’s

work for all the aspect ratios, and the degrees of order of
the packings in these two studies are different as well. No
obvious global or local orders are observed in the cylinder
packings with w ≤ 2.0 obtained by Zhang. While the cylinder
packings with w near 1.0 obtained by Zhao et al. are locally
cubatic ordered, even no global nematic order is observed.
Therefore, what is the main factor that induces to the differ-
ent optimal aspect ratios? The protocol, packing state, packing
density, or degree of order? More work need to be carried out to
explain why their results are not the same and find the optimal
aspect ratio corresponding to the maximal packing density of
cylinders, which has significant meanings in many industrial
applications.

Moreover, in recent studies,31,32 we found uniform aspect
ratio effects, i.e., shape elongation and compression effects, on
the random-packing densities of symmetric particles with three
equal cross sections when w = 1.0, such as the spherocylin-
ders,33 spheroids,34 cuboids,31 and superellipsoids.32,35,36 All
the packing density versus w curves of these particles are in
“M” type with the minimum at w = 1.0 and maximum at
w ≈ 0.7, 1.5, if the packings are in highly disordered states.
However, for the disordered packings of cylinders, the packing
density curve is single-peaked and the optimal aspect ratio cor-
responding to the maximal packing density is 0.926 or 1.224

in previous studies. The aspect ratio effects on the packing
densities for cylinders are significantly different from those
particles mentioned above. Therefore, the influence of particle
shape on the aspect ratio effects is still not clear. Is there any
general relationship between the aspect ratio effects and the
particle shape?

Finally, the Voronoi analysis37 of non-spherical particle
packings becomes more popular in recent studies. Their results
showed that the probability distribution functions (PDFs) of
the local packing density (or the reduced local Voronoi cell
volume) in the random packings of ellipsoid,27,38 cylinder,27

and superellipsoid32 are in normal32,38 or log-normal27 dis-
tributions. Furthermore, the standard deviations of these dis-
tributions depend only on the global packing density and are
not related to the aspect ratios.27,32,38 A linear function was
used to fit their relationships, which can be used to predict
the random-packing densities of different shaped particles.32,38

Dong et al.27 carried out the Voronoi tessellation of mechan-
ically stable cylinder packings with different sliding friction
coefficients. They systemically studied the effects of aspect
ratio and friction coefficient on the Voronoi cells in terms
of the reduced volume, reduced surface area, and sphericity,
including the forms of PDFs, their means, and standard devia-
tions. An exponential function was used to fit the relationship
between the standard deviation of reduced Voronoi cell vol-
ume and the global packing density, which was used to predict
the Voronoi cell properties of cylinder packings. However, the
Voronoi cell properties for the packings of hard frictionless
cylinders in specific packing states need to be reviewed and
compared.

In this work, we obtain the Maximally Random Jammed
(MRJ) packings and Maximally Dense Random Packings
(MDRPs) of cylinders with the aspect ratio 0.2 ≤ w ≤ 6.0.
Both the MRJ state and the MDRP state are the modifications
of the RCP state proposed by Bernal.39 The MRJ packing is
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maximally random (quantified by specified order metrics
with the smallest value) among all jammed packings. Here
“jammed” means that each particle (except rattlers) cannot be
moved, while all of the other particles in the system are fixed as
originally discussed in Ref. 40, which is the definition of “local
jamming.”41 The MDRP is defined as the densest packing in
the random state in which the particle positions and orien-
tations are randomly distributed.31–33,42 The packing density
of the MDRP corresponds to a sharp transition in the order
map, which characterizes the onset of nontrivial spatial corre-
lations among the particles.33,42 The MDRP is also regarded as
a glass state of hard particle systems with an artificial constraint
and is always random.31 The jammed or mechanically stable
condition is emphasized in the MRJ state, while the random
condition is emphasized in the MDRP state. For the particle
shapes which are difficult to crystalize, the packing density of
the MDRP is close to that of the RCP or MRJ packing, such as
the spheroids,32 spherocylinders,33 octahedra,42 and superel-
lipsoids with small surface shape parameters.32 However, for
the particle shapes which are easy to crystalize, the MDRP is
highly disordered but may not be jammed with a lower pack-
ing density, while the MRJ packing possesses some local or
global ordered structures as a result of keeping jammed, such
as the cuboids31 and superellipsoids with large surface shape
parameters.32

The adaptive shrinking cell (ASC) algorithm43,44 and the
inverse Monte Carlo (IMC) method31,32 are, respectively, uti-
lized to generate the MRJ packings and MDRPs of cylinders
in this work. The ASC algorithm is a Monte Carlo (MC) com-
pression process with random particle movements and allows
the simultaneous change of different lattice vectors of the sim-
ulation box at the same time. The IMC method is based on the
ASC method with an order constraint to prevent the forming
of ordered structures in the packing. We find that the optimal
aspect ratio corresponding to the maximal packing density
is w = 0.9 in the MRJ state, while the value is w = 1.2 in
the MDRP state, consistent with the results of Zhao26 and
Zhang,24 respectively. Meanwhile, the values of order param-
eters demonstrate that some ordered structures arise in the MRJ
packings, while the MDRPs are always highly disordered.
Therefore, the reason why these results about the location of
the maximal packing density are not the same is that the pack-
ings they obtained are not in the same state and have different
levels of order. A competition mechanism between the ran-
domness and jamming plays an important role in the cylinder
packings.

Then we investigate the evolutions of packing properties
of perfect cylinders under densification and crystallization. We
compare the different final packing states generated via the
two methods with different compression rates and order con-
straints. In the densification procedure, we generate a series of
packings with decreasing the compression rate in the algo-
rithms, and we find that the packing density increases but
the optimal w corresponding to the maximal packing den-
sity remains the same. Meanwhile, the jammed packings of
cylinders with different aspect ratios possess various local
ordered structures, which can also be detected by the order
parameters. While the random packings are always highly
disordered with very small values of order parameters and

no obvious ordered structures can be observed. In the crys-
tallization procedure, the order constraint in the IMC pack-
ing method is gradually released which means more degree
of order in the packings is allowed, and we find that the
optimal w shifts from 1.2 to 0.9, while the packing den-
sity increases as well. Moreover, the random packing evolves
into the jammed packing in the crystallization procedure and
the randomness is sacrificed to keep the packing jammed,
which reflects the competition mechanism between the ran-
domness and jamming. These results also indicate that the
optimal w is solely related to the degree of order in the cylin-
der packings but not determined by the protocol or packing
density.

Furthermore, via the new proposed scaling factor Rs and
the scaled aspect ratio ws, the location (ws ≈ 1.5) of the maxi-
mal random-packing density of cylinders (Rs = 4/π) is consis-
tent with that of symmetric particles having three equivalent
main axes (Rs = 1.0, such as spherocylinders,33 spheroids,34

cuboids,31 and superellipsoids32,35,36), which indicates a uni-
form shape elongation effect on the random-packing densities
of different shaped particles. Finally, the Voronoi tessellations
of the jammed and random packings of cylinders are car-
ried out, and a rough linear relationship between the mean
and standard deviation of the reduced Voronoi cell volumes is
obtained only for the random packings. Our findings should
lead to a better understanding toward the jammed and random
packings.

The rest of the paper is organized as follows: in Sec. II, we
introduce the perfect cylinder model and the overlap detection
algorithm, then we describe the order parameters and the pack-
ing algorithms we use. The simulation results are discussed in
Sec. III, and concluding remarks are provided in Sec. IV.

II. METHODOLOGY

In this part, we introduce the perfect cylinder model and
the overlap detection algorithm, then we describe the order
parameters and the packing algorithms we use.

A. The perfect cylinder model and overlap detection

The cylindrical model we apply in this work is an ideal
accurate model with sharp edges. A cylindrical particle con-
sists of a cylindrical face and two disk faces. The overlap
detection between two identical cylinders in the packing sys-
tems is carried out in three steps. First, a rough detection based
on the background grid, circumscribed sphere, and inscribed
sphere of the cylinder is used to mostly avoid the complicated
and precise overlap detection. Then the infinite and finite cylin-
drical face to face test is carried out analytically, as well as the
disk to disk test. Finally, the disk to cylindrical face test, involv-
ing a numerical optimization to find the closest point on the
disk to the axis of the cylindrical face, is carried out. More
details can be seen in Refs. 45–48.

B. The order parameters
1. The global orientational order parameters

In this work, we use the nematic order parameter S2, the
order parameters I2, and I4 to evaluate the global orientational
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order in different forms. The nematic order parameter S2 is
an important and widely used metric which characterizes the
physical properties of the nematic state. The S2 is the largest
eigenvalue of the orientational alignment matrix Q which is
defined as49

Q =
1
N

∑N

i=1

(
3
2

ûiû
T
i −

1
2

I
)
, (1)

where ûi is the principal axis which is the unit column vector
of the axial direction of cylinder i, I is the unit matrix, and N
is the total number of particles in the system. Furthermore, the
order parameters I2 and I4 are defined based on the modified
spherical harmonics6

Il =

√
4π

2l + 1

∑m=l

m=−l

�����
1
N

∑N

i=1
Ym

l (θi, ϕi)
�����

2

, l = 2, 4, (2)

where θi and ϕi are the polar and azimuthal angles of the
principal axis ûi and Ym

l (θ, ϕ) are the spherical harmonics.
S2 measures the uniaxial order only, I2 measures the com-
bination of uniaxial and biaxial order, while I4 is able to
measure the uniaxial, biaxial, and cubatic order. The values
of S2, I2, and I4 are all in the range of [0,1]. In a random
packing with 200 particles, the values of S2, I2, and I4 are all
around 0.1. For a packing in which all the particles are par-
allel to each other, i.e., uniaxial order, all these three global
orientational order parameters are equal to unity. In a config-
uration with biaxial order, the I2 and I4 are large, while the S2

is small. While in a cubatic phase, i.e., a configuration with
three axial orders, only the I4 is large, while the S2 and I2 are
small.

2. The normalized local cubatic order
parameter S4local

The normalized local cubatic order parameter S4local is
similar to the local cubatic order parameter defined by Zhang
et al.16 and is applied to evaluate the degree of local orien-
tational order of local structures with different sizes. First,
the average orientation correction of particles with n nearest
neighbor particles is evaluated by S4local ,n which is defined
as41

S4local,n =
1
N

∑N

i=1

[
1

8n

∑n

j=1

(
35cos4θij − 30cos2θij + 3

)]
,

(3)

where n = 1, 2, 3, . . ., 26 represents the number of particles
which are closest to the ith particle, cos θij = ûi · ûj is the
inner product of the principal axes of particle i and its jth
neighbor particle. We choose 26 as the maximal number of
n because there are 26 neighbor particles around a particle in
the simple cubic (SC) lattice packing and 26 is large enough,
as is particularly stated in Ref. 31. Moreover, according to the
central limit theorem, the probability distribution functions of
S4local ,n in the random state are in Gaussian distributions, the
mean Sµ4local,n = 0.0 and the standard deviation Sσ4local,n are

linear to 1/
√

Nn,

Sµ4local,n = 0.0, Sσ4local,n = 1/
(
3
√

Nn
)
, (4)

which is also verified by the Monte Carlo tests.31 Then the
S̃4local,n is normalized as

S̃4local,n =

������

S4local,n − Sµ4local,n

Sσ4local,n

������
=

���3
√

NnS4local,n
��� (5)

and the normalized local cubatic order parameter S4local is

S4local = max
n

{
S̃4local,n|n = 1, 2, 3, . . . , 26

}
. (6)

For a uniaxial ordered packing of cylinders, both the global ori-
entational order parameters mentioned above and the S4local ,n

are unity, and the normalized local cubatic order parameter
S4local is larger than 150.0 for N = 200. However, in a poly-
crystalline structure or a quasi-random packing50 with large
amounts of local ordered clusters, the global orientational
order parameters are small, while the S4local is large. The
smaller the S4local is, the more random the packing is. In an
ideal random packing, S4local = 0.0.

3. The normalized local bond-orientational
order parameter Q6local

The normalized local bond-orientational order parameter
Q6local is based on the original bond-orientational order param-
eter51 Q6 and is used to evaluate the local bond-orientational
order in a packing configuration. The calculation of Q6local

is described in Ref. 32 in detail. Like the S4local ,n, the aver-
age bond-orientational correlation of particles with n nearest
neighbor particles is evaluated by Q6local,n,

Q6local,n =

√
4π
13

∑m=6

m=−6

�����
1
N

∑N

i=1

[
1
n

∑n

j=1
Y6m

(
θij, ϕij

)] �����

2

,

(7)

where θij, ϕij are the polar and azimuthal angles of the bond
formed by particle i and its jth neighbor particle. Here we also
choose 26 as the maximal number of n for the reasons men-
tioned above. Via the Monte Carlo tests of Q6local,n,32 we find
that the values of Q6local,n in the random state are also in Gaus-
sian distributions, the mean Qµ

6local,n and standard deviation

Qσ
6local,n are linear to 1/

√
Nn with

Qµ
6local,n = 0.981 23/

√
Nn, Qσ

6local,n = 0.193 79/
√

Nn. (8)

The Q̃6local,n is normalized as

Q̃6local,n =

������

Q6local,n − Qµ
6local,n

Qσ
6local,n

������
(9)

and the normalized local bond-orientational order parameter
Q6local is

Q6local = max
n

{
Q̃6local,n|n = 1, 2, 3, . . . , 26

}
. (10)

The Q6local is larger than 60.0 in the Simple Cubic (SC),
Body-Centered Cubic (BCC), Face-Centered Cubic (FCC),
and Hexagonal Close-Packed (HCP) packings. The smaller the
Q6local is, the more random the packing is. In an ideal random
packing, Q6local = 0.0.
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C. The packing algorithms
1. The adaptive shrinking cell method

The adaptive shrinking cell (ASC) method was devised
by Torquato and Jiao to obtain the densest packings43,44 and
the MRJ packings52 of ideal hard polyhedral particles. The
ASC algorithm is a Monte Carlo (MC) compression pro-
cess with random particle movements and allows the simul-
taneous change of different lattice vectors of the simulation
box at the same time. In a MC move step, each particle is
randomly moved (translated or rotated) for λ times, then a
boundary deformation (compression or shear) is carried out.
The boundary is a parallelepiped with periodical boundary
conditions in three directions. If all the particles are still non-
overlapped after a particle movement or a boundary defor-
mation, the movement or deformation is accepted. Other-
wise, it is rejected. Starting from an unjammed packing with
a very low packing density (ϕ ≈ 0.1), MC move steps are
applied to the particulate system until the particles cannot
be moved with the moveable scale smaller than 1 × 10−5.
The packing density and degree of order of the final packing
configuration are affected by the compression rate Γ which
is defined as the inverse of λ, Γ = 1/λ. Especially, Chen
et al. used the ASC numerical scheme to investigate the equi-
librium phase behavior and the MRJ state of truncated tetra-
hedra with different compression rates.53 More details about
the ASC algorithm can be found in Refs. 41, 43, 44, 52, and
53. In this work, we set the compression rate Γ = 0.001, 0.01,
0.02, 0.1, 1.0 to obtain the jammed cylinder packings with
different packing densities and degrees of order. In general,
the smaller the compression rate Γ is, the slower the par-
ticulate system will be compressed. The final packings will
be denser and more ordered. As also stated in Ref. 53, for
a very small Γ, the system is compressed slowly and the
particles are moved adequately to form ordered structures.
The system almost behaves in an equilibrium process and
will finally evolve into a highly dense and ordered packing.
While for a larger Γ, the system is compressed much faster
and is driven out of the equilibrium branch. The particles
do not have enough time to form ordered structures and are
jammed quickly. Therefore, the system will eventually turn
into a disordered and jammed packing with a lower packing
density.

We also note that the specific compression rate for the
true MRJ state of cylinders may vary with the aspect ratio.
According to Refs. 52 and 53, and in order to decrease the
computation costs and compare the MRJ packings with the
MDRPs of cylinders for convenience, we just consider the
cylinder packings obtained with Γ = 0.1 as approximations
to the MRJ states, namely, the MRJ-like packings. We note
that the MRJ packings referred in this work are actually the
MRJ-like packings.

2. The inverse Monte Carlo method

The inverse Monte Carlo (IMC) method31,32 allows one
to generate a maximally dense packing of hard particles
with a controllable random degree evaluated by prescribed
order parameters. This method is based on the ASC method
mentioned above. In the IMC method, the particles are also

randomly translated or rotated and the boundary is allowed to
compress but not shear. Therefore, the boundary is fixed to be
cubic with periodical boundary conditions in three directions.
Besides the non-overlapping condition, the particle movement
and boundary deformation are also rejected if all the calcu-
lated order parameters are larger than a prescribed value Opup,
which is regarded as an order constraint. The IMC method will
degenerate into the ASC method if Opup = +∞. The Opup is
set to be small enough (Opup = 0.5) to prevent the formation of
ordered structures. Therefore, the system is always random and
becomes a supercooled liquid, turning into glass. Meanwhile,
the final packing density is also affected by the compression
rate Γ. The smaller the Γ is, the denser the final packing will
be. However, the degree of order of the final configurations
is mainly determined by the order constraint Opup rather than
the compression rate Γ. More details are discussed in Refs. 31
and 32.

In this work, we use the normalized local cubatic order
parameter S4local and the normalized local bond-orientational
order parameter Q6local mentioned above to control the degrees
of local orientational and bond-orientational order, respec-
tively. In order to obtain the closely approximate MDRPs of
cylinders, the order constraint Opup is set to be 0.5, which
is small enough to ensure the randomness of the system,
and the compression rate Γ is set to be 0.001, which is
small enough to ensure that the final packing is maximally
dense on the premises of randomness. Moreover, a strong
linear relationship exists between the final packing density
and the Opup when the Opup is smaller than 4.0.31 There-
fore, the packing density when Opup = 0.0, which means the
packing density of the ideal MDRP, can be predicted via a
linear fitting. In order to decrease the computer costs and
compare the other packing properties, we just use the final
packings obtained with Opup = 0.5 as close approximations to
ideal MDRPs. Meanwhile, we also set Γ = 0.001, 0.01, 0.02,
0.1, 1.0 and Opup = 0.5, 3.0, 5.0, 10.0, 20.0, 30.0 to inves-
tigate the effects of compression rate and order constraint,
respectively.

III. RESULTS AND DISCUSSION

As introduced in the method part, we generate the MRJ
packings and MDRPs of cylinders with different aspect ratios
w via the ASC method and the IMC method, respectively. We
also investigate the evolutions of packing properties of per-
fect cylinders under densification and crystallization. In the
densification procedure, we generate a series of jammed and
random packings with decreasing the compression rate Γ in
both methods. In the crystallization procedure, we release the
order constraint Opup in the IMC method with Γ = 0.02. The
total number of particles is set to be N = 200, which is large
enough to ignore the system size effect.31,32,42 All the pack-
ings of cylinders are averaged over 5 times and the error bars
in the figures below represent the standard deviations. Some
finial packing structures of the jammed and random packings
generated with different compression rates Γ are shown in
Figs. 2 and 3, respectively. The packings generated with dif-
ferent order constraints Opup are shown in Fig. 4. The details
are discussed below.
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FIG. 2. The evolutions of the jammed packing configurations of cylinders
generated via the ASC method with the aspect ratio w = 0.2, 1.0, 2.0, 6.0 and
the compression rate Γ = 0.001, 0.01, 0.02, 0.1, 1.0. All the cylinder packings
with different w become more ordered with the decrease of Γ. The packings
generated with Γ = 0.1 are the MRJ packings.

A. MRJ packings and MRDPs of cylinders

As mentioned in the methodology part, the MRJ packings
of cylinders are the jammed packings obtained via the ASC
method with Γ = 0.1 and the MDRPs of cylinders are the
random packings obtained via the IMC method with Γ = 0.001,
Opup = 0.5. Figure 5(a) shows the packing densities of the MRJ
packings and the MDRPs of cylinders as a function of the
aspect ratio. The simulation results of Zhang24 and Zhao26 are
also demonstrated in the figure for comparison. The maximal ϕ
of the MRJ packing is obtained at w = 0.9, while the maximal ϕ
of the MDRP is obtained at w = 1.2, consistent with the results
of Zhao26 and Zhang,24 respectively. For w ≤ 1.0, the packing
density of the MRJ packings is higher than that of the MDRPs.
While for w ≥ 1.2, the packing density of the MDRPs is little
higher.

Meanwhile, as can be seen in Figs. 5(b)–5(f), the global
order parameters S2 and I2 are always smaller than 0.15 for
both the MRJ packings and MDRPs of cylinders with differ-
ent aspect ratios. However, the I4, S4local, and Q6local for the

FIG. 3. The evolutions of the random packing configurations of cylinders
generated via the IMC method with the aspect ratio w = 0.2, 1.0, 2.0, 6.0, the
compression rate Γ = 0.001, 0.01, 0.02, 0.1, 1.0, and the order constraint Opup

= 0.5. All the cylinder packings with different w are highly disordered with
different Γ. The packings generated with Γ = 0.001 are the MDRPs.

FIG. 4. The evolution of the packing configurations of cylinders generated
via the IMC method with the aspect ratio w = 1.0, the compression rate
Γ = 0.02, and the order constraint Opup = 0.5, 5.0, 10.0, 20.0, 30.0. The
packing configuration of cylinders generated via the ASC method with
w = 1.0, Γ = 0.02 is also shown at the bottom right and is titled by Opup = +∞.
The cylinder packings become more ordered with the increase of Opup.

MRJ packings of cylinders are much higher than those for
the MDRPs, especially for the cylinders with w near 0.2 and
1.0. In other words, the MRJ packings are not always strictly
random packings, as can also be seen in Fig. 2. In the MRJ
packings, the randomness may be sacrificed and particles tend
to crystalize to keep the packings jammed or mechanically sta-
ble. A competition mechanism between the randomness and
jamming plays an important role in the cylinder packings and
will be discussed later.

Therefore, the reason why the results of Zhao26 and
Zhang24 about the locations of maximal packing density are
not the same is that the packings they obtained are not in the
same state and have different order levels. The cylinders with w
near 0.2 and 1.0 are easy to crystalize. Meanwhile, the packing
densities of Zhao’s results are very close to those of the MRJ
packings obtained in this work. However, the packing densi-
ties of Zhang’s results are much lower than those of the MDRP
state. This is probably because the packing they obtained is a
kind of random packing but not the maximally dense one via
the CR algorithm, while the MDRP state is the maximally
dense state among all random packings.

We also compare the aspect ratio effects on the random-
packing densities of cylinders with those of other shaped parti-
cles. In Refs. 31 and 32, we found uniform aspect ratio effects
on the random-packing densities of symmetric particles with
three equal cross sections when w = 1.0, such as spherocylin-
ders,33 spheroids,34 cuboids,31 and superellipsoids.32,35,36 All
the packing density versus w curves of these particles are in
“M” type with the minimum at w = 1.0 and the maximum at
w≈0.7, 1.5. However, for the MDRPs of cylinders, the packing
density curve is single-peaked and the maximum is obtained
at w ≈ 1.2. We note that these symmetric particles mentioned
above have the same cross and vertical sections when w = 1.0
and the definition of aspect ratio is uncontroversial. Neverthe-
less, a cylinder with w = 1.0 has distinct cross and vertical
sections which are circle and square, respectively. Consid-
ering the differences mentioned above, we scale the aspect
ratio as

ws = Rsw, (11)
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FIG. 5. The packing density ϕ (a), the global orientational order parameters S2 (b), I2 (c), I4 (d), the normalized local cubatic order parameter S4local (e),
and the normalized local bond-orientational order parameter Q6local (f) of the MRJ packings and MDRPs of cylinders with 0.2 ≤ w ≤ 6.0. The simulation
results of Zhang24 and Zhao26 are also shown for comparison in (a). The inset in (a) shows the details of the rectangular region surrounded by black dashed
lines. The maximum density of the MRJ packings and Zhao’s results is at w = 0.9, while the maximum density of the MDRPs and Zhang’s results is at
w = 1.2. The I4, S4local , and Q6local for the MRJ packings of cylinders are much higher than those for the MDRPs, especially for the cylinders with w near 0.2
and 1.0.

where ws is the scaled aspect ratio, Rs is the scaling factor
which is defined as the ratio of the vertical sectional area to
the cross-sectional area when w = 1.0.

For spherocylinders, spheroids, cuboids and superellip-
soids, whose cross and vertical sections are equal when
w = 1.0, the scaling factor Rs = 1.0. While for cylinders, the
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FIG. 6. The packing densities of different shaped particles as a function of
the scaled aspect ratio ws. All the packing density curves obtain a maximum
at ws ≈ 1.5, indicating a uniform shape elongation effect.

scaling factor Rs = 4/π. Then the packing density curves of
these particles are redrawn as a function of ws in Fig. 6. The
location of the maximum of cylinders is also ws ≈ 1.5, which
is consistent with other shaped particles. When ws > 1.0, the
packing densities of all these particles first increase until reach-
ing the maximal value at ws ≈ 1.5 and then decrease, indicating
a uniform shape elongation effect on the random-packing den-
sities of particles with different Rs. However, when ws < 1.0,
the packing density of cylinders always decreases with the
decrease of ws, while the packing densities of other shaped
particles first increase and then decrease. Therefore, the shape
compression effects on the random-packing densities of parti-
cles with different Rs may not be the same and more work will
be carried out to find their relations in the future.

B. Evolutions under densification
1. The evolutions of the jammed packings

The evolutions of the packing density ϕ, the global ori-
entational order parameters S2, I2, I4, the normalized local
cubatic order parameter S4local, and the normalized local bond-
orientational order parameter Q6local of the jammed packings
generated via the ASC method with Γ = 0.001, 0.01, 0.02,
0.1, 1.0 are shown in Figs. 7(a)–7(f), respectively. Figure 7(a)
shows that all the cylinder packings with different w become
denser with the decrease of Γ which means the reduction of
the compression rate. During the densification process, the
packing density of cylinders with w = 0.9 is always a local
maximum whichever Γ is used. When Γ = 1.0, 0.1, the packing
density curve is single peaked. However, the packing densities
of cylinders with w = 0.2, 6.0 are also relatively high when Γ
is even smaller. Meanwhile, during the densification process,
obvious ordered structures arise in the jammed packings of
cylinders with different aspect ratios, as can also be seen in
Fig. 2.

For the disk-like cylinders with w < 0.5, the I4 and S4local

increase rapidly and the Q6local increases little slower with
the decrease of Γ. However, the values of S2 and I2 are
always near 0.1, which are small enough to verify that no

global nematic order arises in these packings. Therefore, the
disk-like cylinders tend to form stacks of two to five particles
with disk-disk face joint and these stacks tend to be perpen-
dicular to each other, indicating a cubatic phase. The stacks
become longer and more perpendicular with each other with
the decrease of Γ, and no nematic phase is observed, as can be
seen in Fig. 2.

For the cylinders near the shape of an equilateral cylin-
der with 0.7 < w < 1.3, the I4, S4local, and Q6local increase
sharply and become more prominent with the decrease of Γ.
The S2 and I2 are always near 0.1 for Γ ≥ 0.01. While for
Γ = 0.001, the S2 and I2 also become prominent and larger
than 0.2 but smaller than 0.4. This is because the main axes of
these cylinders are almost along three directions perpendicular
to each other, which also causes the small increase of S2 and
I2. Therefore, the cylinders near the shape of an equilateral
cylinder tend to form a cubatic phase with their centers in a
simple cubic lattice and their main axes along three directions
perpendicular to each other. No nematic phase is observed as
well, as can be seen in Fig. 2.

For the slender cylinders with w ≥ 3.0, the S2, I2, I4, and
S4local increase with the decrease of Γ. Meanwhile, these order
metrics increase with the increase of w. The Q6local is always
small for Γ ≥ 0.01, while the Q6local increases rapidly for
Γ = 0.001, indicating the arising of high bond-orientational
order. Therefore, the slender cylinders tend to form a nematic
phase and the centers of slender cylinders tend to be arranged
in order as well, as also shown in Fig. 2.

Finally, we note that even for the fastest compression
process with Γ = 1.0, not all the packings of cylinders with
0.2 ≤ w ≤ 6.0 are fully random. As can be seen in Figs. 7(d)–
7(f), the I4 approaches 0.2 and the S4local approaches 40 for
the disk-like cylinders. The Q6local is also little higher for the
cylinders near the shape of an equilateral cylinder. The results
indicate that the randomness in the cylinder packings must be
sacrificed to keep the packings jammed or mechanically stable
for the disk-like cylinders and the cylinders near the shape of
an equilateral cylinder. These kinds of cylinders are easy to
crystalize.

2. The evolutions of the random packings

Figures 8(a)–8(f) show the evolutions of the packing den-
sity ϕ, the global orientational order parameters S2, I2, I4,
the normalized local cubatic order parameter S4local, and the
normalized local bond-orientational order parameter Q6local

of the random packings generated via the IMC method with
the compression rate Γ = 0.001, 0.01, 0.02, 0.1, 1.0 and the
order constraint Opup = 0.5. As can be seen in Fig. 8(a), all the
cylinder packings with different w also become denser with
the decrease of Γ.

However, during the densification process, all the pack-
ing density curves are always single peaked and the locations
of the peaks are all about w = 1.2 whichever Γ is used. The
packing densities of the random packings are lower than those
of the jammed packings shown above with the same Γ and
the locations of the peaks are different from those of the
jammed packings. These differences are caused by a com-
petition mechanism between the randomness and jamming,
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FIG. 7. The evolutions of the packing density ϕ (a), the global orientational order parameters S2 (b), I2 (c), I4 (d), the normalized local cubatic order parameter
S4local (e), and the normalized local bond-orientational order parameter Q6local (f) of the jammed packings generated via the ASC method with the compression
rate Γ = 0.001, 0.01, 0.02, 0.1, 1.0. The packing density of cylinders with w = 0.9 is always a local maximum whichever Γ is used. The order parameters increase
with the decrease of Γ.

which will be discussed in Sec. III C. Moreover, no mat-
ter which compression rate Γ is applied, all the global order
parameters S2, I2, and I4 are around 0.1 and the local
order parameters S4local and Q6local are almost 0.5 during the

densification process, as a result of the small value of the order
constraint Opup = 0.5. Therefore, all the packings generated
via this method are highly disordered, as also demonstrated in
Fig. 3.
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FIG. 8. The evolutions of the packing density ϕ (a), the global orientational order parameters S2 (b), I2 (c), I4 (d), the normalized local cubatic order parameters
S4local (e), and the normalized local bond-orientational order parameters Q6local (f) of the random packings generated via the IMC method with the compression
rate Γ = 0.001, 0.01, 0.02, 0.1, 1.0 and the order constraint Opup = 0.5. The packing density curves are always single peaked and the locations of the peaks are
always about w = 1.2. Meanwhile, the order parameters are always very small in these random packings.

C. Evolutions under crystallization

As mentioned above, the packing density at w = 0.9 is a
local maximum on the packing density curves of the jammed
packings, while the maximal packing density for the random

packings accrues at w = 1.2. The difference is caused by a
competition mechanism between the randomness and jam-
ming. Via the ASC method, the packings are compressed
into jammed configurations and some local ordered structures
appear in order to keep the packings jammed. Meanwhile,
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with the decrease of the compression rate Γ, the local ordered
structures become more dominant and the packings become
denser and more ordered. By comparison, in the IMC method
with a small value of the order constraint Opup = 0.5, the
packings are compressed on the premise of randomness and
the crystallization is suppressed. With the decrease of the
compression rate Γ, the packings are densified but still keep
random.

In order to investigate the effects of the order con-
straint, i.e., the evolutions of packings under crystallization,
we gradually release the order constraint which means more
ordered structures in the packings are allowed in the evolu-
tions. Thus, the packings tend to crystallize and a compromise
between the randomness and jamming is carried out. The
order constraint is set to be Opup = 0.5, 3.0, 5.0, 10.0, 20.0,
30.0, +∞. If Opup = +∞, the order constraint is completely
released and the IMC method will degenerate into the ASC
method. The compression rate is set as Γ = 0.02 for simpli-
fication. Figures 9(a)–9(f) show the packing density ϕ, the
global orientational order parameters S2, I2, I4, the normal-
ized local cubatic order parameter S4local, and the normalized
local bond-orientational order parameter Q6local of the cylin-
der (0.6 ≤ w ≤ 1.6) packings generated with different values
of Opup.

As can be seen in Fig. 9(a), the packing densities of cylin-
ders with different aspect ratios w increase with the increase
of Opup. Meanwhile, all the packing density curves with 0.6
≤ w ≤ 1.6 are single peaked and the location of the peak grad-
ually shifts from w = 1.2 (the peak location of the random
packings) to w = 0.9 (the peak location of the jammed pack-
ings). Moreover, the S2, I2 are always near 0.1 which are very
small, but the I4, S4local, and Q6local increase sharply. Espe-
cially, the S4local almost reaches the Opup. The maxima of I4

and S4local are at w = 0.9. However, the Q6local reaches the
maximum at w = 1.0, because the centers of the equilateral
cylinders are easier to form a simple cubic lattice. Therefore,
releasing the order constraint makes the packings denser and
more ordered. The particulate system is transformed from a
random packing to a jamming packing, as can also be seen
in Fig. 4. The randomness is sacrificed to keep the pack-
ing jammed and the cylinders with w near 1.0 are easy to
crystalize.

The optimal aspect ratio for the MRJ packing is about
0.9. On one hand, the cylinders with w ≈ 0.9 are easier to
crystalize. As can be seen in Fig. 7, the values of order met-
rics at w ≈ 0.9 are always local maxima. Therefore, in order
to keep jammed and maximal random, the MRJ packing of
cylinders with w ≈ 0.9 is more ordered than those with other
aspect ratios and achieves a higher packing density. On the
other hand, both the minimal relative excluded volume and
the minimal ratio of the excluded volumes of perpendicular
and parallel orientation are obtained at w =

√
π/2 ≈ 0.886,

which is very close to 0.9. This may also be a reason why the
optimal aspect ratio for the MRJ packing is w ≈ 0.9. The opti-
mal aspect ratio for the MDRP is about 1.2. This is because
the randomness condition is specially required and the MDRP
of cylinders with w near 0.9 is not jammed and the packing
density of the MDRP is much lower than that of the MRJ pack-
ing, as can be seen in Fig. 5. As a compromise between the

randomness and densification, the optimal aspect ratio for the
MDRP is about 1.2, which is consistent with the optimal aspect
ratio values of other rod-like particles via the scaled aspect ratio
with ws ≈ 1.5. However, we still have no idea about the reason
why the optimal scaled aspect ratio for the MDRPs of rod-like
particles is about 1.5 rather than the other value. More work
will be carried out in the future.

To summarize, the optimal aspect ratio w correspond-
ing to the maximal packing density is not influenced by the
compression rate Γ in both packing methods. When the Γ
is decreased, the packing density ϕ increases but the opti-
mal w does not change. However, the optimal w is influenced
by the order constraint Opup in the IMC method. When the
Opup is released, the packing density ϕ also increases but the
optimal w shifts from the peak location of random packings
(w = 1.2) to the peak location of jammed packings (w = 0.9).
These results also indicate that the optimal w is solely related
to the degree of order in the cylinder packings but not deter-
mined by the protocol or packing density. Moreover, we con-
jecture that the effects of degree of order on the value of
optimal w are also valid for other shaped particles whose
MDRP and MRJ packing are not the same, such as cuboids.
More work will be carried out in the future to verify the
conjecture.

D. The Voronoi analysis

Recent studies show that the probability distribution func-
tions (PDFs) of the local packing density (or the reduced local
Voronoi cell volume) in the random packing configurations
of ellipsoid,27,38 cylinder,27 or superellipsoid32 are in normal
or log-normal distributions. Moreover, the standard deviations
of these distributions depend only on the global packing den-
sity and are not related to the aspect ratios. A linear (or an
exponential) function is used to fit their relationships, which
can be used to predict the random-packing densities of dif-
ferent shaped particles. In this work, we also tessellate the
jammed and random packing configurations of hard friction-
less cylinders generated above and investigate their micro-
cosmic properties via the set Voronoi diagram method.54 The
cylinder surface is discretized via the cylindrical coordinates,
and the Voro++ program55 is used to compute the Voronoi
cells of discrete points. We carry out the Voronoi analysis via
the reduced local Voronoi cell volume V local which is defined
as

Vlocal =
Vcell

Vp
, (12)

where Vp is the volume of the particle in the cell and V cell

is the volume of the particle’s Voronoi cell. Here we use the
reduced local Voronoi cell volume V local rather than the local
packing density 1/V local because the mean of V local is accu-
rately equal to the inverse of the global packing density, while
the mean of the local packing density is not accurately equal
to the global packing density. We mainly focus on the PDF
form, the mean Vµ

local, and the standard deviation Vσ
local of

V local.
Figure 10(a) shows the discretized surfaces of cylinders

with w = 0.2, 1.0, 2.0, 6.0. The points are uniformly dis-
tributed on the cylindrical surfaces. The polar angles and radial
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FIG. 9. The evolutions of the packing density ϕ (a), the global orientational order parameters S2 (b), I2 (c), I4 (d), the normalized local cubatic order parameter
S4local (e), and the normalized local bond-orientational order parameter Q6local (f) of the packings generated via the IMC method with the compression rate
Γ = 0.02 and the order constraint Opup = 0.5, 3.0, 5.0, 10.0, 20.0, 30.0, +∞. The peak of the packing density curve shifts from w = 1.2 to w = 0.9 and the I4,
S4local , and Q6local increase with the increase of Opup. While the S2 and I2 are always very small.

distances of the points on the disk surface are also uniformly
distributed. All the cylinder surfaces are discretized by nearly
1000 points to ensure the accuracy of the Voronoi tessellation.
Figure 10(b) shows the relative errors of the Vσ

local as a func-
tion of the resolution which is the number of points used to

discretize the surface. Here the jammed packings of cylinders
with w = 0.2, 1.0, 6.0, Γ = 0.01 are used to validate the res-
olution. The relative errors of Vσ

local decrease rapidly with the
increase of the resolution, and the errors are generally smaller
than 2.0% when about 1000 points are used. However, the
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FIG. 10. (a) The discretized surfaces of cylinders with w = 0.2, 1.0, 2.0, 6.0. The cylinder surfaces are discretized by 1094, 1082, 1058, 942 points, respectively.
(b) The relative errors of the Vσ

local as a function of the resolution. The jammed packings of cylinders with w = 0.2, 1.0, 6.0, Γ = 0.01 are used to validate the
resolution. The errors decrease rapidly with the increase of the resolution and are generally smaller than 2.0% if about 1000 points are used. (c) The relationship
between the mean Vµ

local and standard deviation Vσ
local for the jammed packing configurations of cylinders with different aspect ratios w and compression rates

Γ. No obvious relationship is observed. (d) The relationship between the mean Vµ
local and standard deviation Vσ

local for the random packing configurations of
cylinders with different aspect ratios w and compression rates Γ. A rough linear relationship is observed.

computational cost increases rapidly as the resolution
increases. As a compromise between accuracy and compu-
tational cost, we use about 1000 points to discrete the surfaces
of all the cylinders studied in this work.

The relationship between the mean Vµ
local and standard

deviation Vσ
local calculated from the jammed and random pack-

ing configurations of cylinders with different w and Γ is shown
in Figs. 10(c) and 10(d), respectively. The relationship between
the Vσ

local and Vµ
local for the jammed packings is very chaotic,

while a rough linear relationship is found for the random pack-
ings. Meanwhile, we also observe that the PDFs of V local for
all the random packings are in normal-like distributions, while
only the PDFs for the jammed packings with very small or
very large order-parameter values are in normal-like distribu-
tions. This is because all the particles are in similar random
surroundings for all the random packings and the jammed
packings with very small order parameters. For the jammed
packings with very large order parameters, all the particles
are in similar ordered surroundings. Therefore, the PDFs for
these packings are in normal-like distributions. However, for
other jammed packings which are partially ordered, some

particles are in the random surroundings while others are in the
ordered surroundings. Thus their PDFs are not in the normal
distribution form. Therefore, in order to get a uniform relation-
ship between the Vσ

local and Vµ
local, the packings must be on the

same random degree, which shows the benefits of the MDRP
state.

IV. CONCLUSION

In this work, we investigate the evolutions of the packing
properties of perfect cylinders under densification and crys-
tallization. First, the MRJ packings and MDRPs of cylinders
with different aspect ratios are generated via the ASC and the
IMC method, respectively. The global and local order parame-
ters are used to evaluate the degree of order of these packings.
The optimal aspect ratio corresponding to the maximal pack-
ing density is w = 0.9 in the MRJ state, while the value is
w = 1.2 in the MDRP state, consistent with the results of Zhao26

and Zhang,24 respectively. Then we investigate the evolutions
of packing properties of perfect cylinders under densification
and crystallization.
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In the densification procedure, the jammed and random
packings are separately generated via the two methods with
decreasing the compression rate. We find that all the pack-
ings become denser but the optimal w corresponding to the
maximal packing density remains the same. Meanwhile, some
local ordered structures arise in the jammed packings, while
the random packings are always highly disordered. This is
because of the competition mechanism between the random-
ness and jamming, which is investigated by gradually releasing
the order constraint in the IMC method, i.e., the crystallization
procedure.

In the crystallization procedure, the optimal w shifts from
1.2 to 0.9, while the packing density and the degree of order
increase with the releasing of the order constraint. Mean-
while, the random packing evolves into the jammed packing
in this procedure, and the randomness is sacrificed to keep the
packings jammed. The competition mechanism explains the
differences of the literature results about the optimal aspect
ratios. The packings they obtained are not in the same order
level, and the cylinders with w near 1.0 are easy to crystal-
ize. Zhang’s results are highly random with lower packing
densities, while Zhao’s results have some local ordered struc-
tures and higher packing densities. These results also indicate
that the optimal w is solely related to the degree of order in
the cylinder packings but not determined by the protocol or
packing density.

Moreover, we propose the concept of the scaling factor Rs

and the scaled aspect ratio ws, which are successfully used to
draw a uniform shape elongation effect on the random-packing
densities of various shaped particles. The random-packing
density first increases with the increase of ws from ws = 1.0 and
reaches a maximal value at ws ≈ 1.5 for all the rod like particles
such as spherocylinders, spheroids, cuboids, superellipsoids,
and cylinders. However, the shape compression effects on the
random-packing densities of particles with different scaling
factors Rs are not identical and more work will be carried out in
the future to investigate the relation between the surface shape
and the shape compression effects. We also note that the uni-
form aspect ratio effects discussed here must be on the premise
of randomness rather than jamming or mechanical stability.
In the MRJ or RCP state, the aspect ratio effects still work
for the particle shapes which are difficult to crystalize, such
as spherocylinders, spheroids, and superellipsoids with small
surface shape parameters, whose MRJ or RCP state is almost
the same with the MDRP state. However, for particle shapes
which are easy to crystalize, such as cuboids, superellipsoids
with large surface shape parameters and cylinders studied in
this work, the aspect ratio effects for the MRJ or RCP state
are not uniform. Therefore, the MDRP state provides a better
platform which shows the uniform particle shape effects on
the random-packing densities.

Finally, we carried out the Voronoi tessellations for the
jammed and random cylinder packing configurations via the
set Voronoi diagram method. A rough linear relationship
between the mean and standard deviation of the reduced
Voronoi cell volumes is obtained for the random packings.
However, the relationship for the jammed packings is chaotic.
Meanwhile, the PDFs of the reduced Voronoi cell volume for
all the random packings are in normal-like distributions, while

only the PDFs for jammed packings with very small or very
large order parameter values are in normal-like distributions.
These findings further show the benefits of the MDRP state.
Moreover, further studies should be carried out to investigate
the exact form of the PDFs of the reduced Voronoi cell vol-
ume for systems in various states. Our findings should lead to
a better understanding toward the jammed and random pack-
ings and are helpful in guiding the development of theoretical
models for particle packings as well as the granular material
design.
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