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The superellipsoid model is a rich geometric model and is convenient to study the particle shape effects on ran-
dom packings. The particle shape significantly influences the macroscopic and microscopic structure properties
of random packings. In this work, we find uniform and decoupled shape effects on themaximally dense random
packings (MDRPs) of hard superellipsoids. Slightly changing the surface shape or elongating (compressing) the
particles may influence the random packing density significantly. The influences of surface shape parameter p
and aspect ratio w on the random packing densities are decoupled. For the aspect ratio effects, all the packing
density curves show “M” type with various p. Meanwhile, the aspect ratio effects are applicable to all the sym-
metric particles with three equal main cross sections when w = 1.0. For the surface shape effects, the packing
density curve is also in “M” type with various w. The maximum of the random packing density is obtained at p
≈ 0.7, 2.0 and w ≈ 0.7, 1.5. Moreover, we obtain the MDRPs of hard superellipsoids via the inverse Monte
Carlo packing method with a wide range of the surface shape parameter. The normalized local cubatic order pa-
rameter and a new normalized local bond-orientational order parameter are used to evaluate the order degrees
of orientations and bond-orientations in random packings, respectively. The local analyses of the MDRPs of
superellipsoids are carried out via the Voronoi tessellation. Two linear relationships between themean and stan-
dard deviation of the reduced Voronoi cell volumes are obtained. Ourfindings should lead to a better understand-
ing of random packings and are helpful in guiding the granular material design.
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1. Introduction

Since Bernal [1] and Scott's [2] studies on the monodisperse sphere
packings, the random particle packings have been applied in many
fields such as the structures of liquids, glasses, heterogeneous materials
and granular media [3–8]. The random packings of spherical and non-
spherical particles are widely studied in decades and the particle
shape significantly influences the macroscopic (microscopic) structure
properties of random packings. The packing density of the Random
Close Packing (RCP) of spheres is about 0.64 [1], which is close to that
of the Maximally Random Jammed (MRJ) packing of spheres [9]. Previ-
ous studies demonstrate that introducing asphericity to the particle
shape will change the structure properties and increase the random
packing density above that of spheres. The asphericity of a particle can
be increased via elongating (compressing), i.e. changing the aspect
ratio, such as the spherocylinders [10–19] and ellipsoids [13, 20–27].
Meanwhile, changing the surface shape can also increase the
asphericity, for example, the superballs [28]. These two shape factors
are independent and fundamental in particle morphology. Therefore,
systemically investigating the aspect ratio and surface shape effects on
the random packings is important and meaningful.

The superellipsoid model [29] is a rich geometric model and is
convenient to study the particle shape effects. It is believed that 80% of
shapes of solids can be represented by superellipsoids [30, 31].
Superellipsoids are used to model symmetric particle geometries with
a range of aspect ratios and edges ranging from rounded to spiky in
shape [32], such as spheres, ellipsoids, superballs, and cylinder-like, cu-
boid-like, octahedron-like particles. The densest packing of different
shaped superellipsoids has been studied by a number of researchers.
For example, the densest packing of spheres is the Face-Centered Cubic
(FCC) packing or Hexagonal Close Packing (HCP), which was proved by
Hales in 2005 [33]. The densest known ellipsoid packings are the SM2
crystal [34] and the SQ-TR crystal [35] for different aspect ratios. The
densest known superball packings are the Bravais lattices with different
lattice vectors when the surface shape parameter varies [36]. Moreover,
the phase behaviors of superballs were well studied by Batten et al. [37]
andNi et al. [38] The phase behaviors of spheroids [39–41] and biaxial el-
lipsoid [42] have also been systemically investigated.

As for the random packings of different shaped superellipsoids, the
aspect ratio effects on the randompacking densitywere not always uni-
form. The random packings of spheroids were studied by many
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researchers [13, 20–27] and all their results demonstrated that the
packing density reaches the maximum value when the aspect ratio is
about 0.7 or 1.5 and the packing density of sphere is a local minimum,
whichmeans that slightly elongating or compressing the spheres via el-
lipsoids will improve the random packing density. Similarly, changing
the surface shape away from spheres via superballs will also improve
the random packing density, as shown by Jiao et al. in ref. [28]. Further-
more, Delaney et al. [24] and Zhao et al. [27] studied the aspect ratio ef-
fects on the random packings of superellipsoids which are elongated or
compressed superballs. The random packing density curves are in “M”
type when the superball is close to a sphere with the surface shape pa-
rameter p=5/7, 5/6, 1.0 and 1.5. Here the shape parameter p=m/2=
1/ζ, where m is the shape parameter defined in ref. [24] and ζ is the
blockiness defined in ref. [27]. However, when the superball is much
closer to a cube with p = 2.0 and 2.5, the packing density curves are
not in “M” type and the maximum value is obtained at the aspect ratio
w = 1.0 [24, 27]. This is because their packings must be mechanically
stable or jammed. The randomness must be compromised and ordered
structures dominate to keep the packing structure mechanically stable
or jammed when the particle shape is close to an ideal cube. In other
words, the final superellipsoid packings in their work are not always
on the same random degree and the aspect ratio effects are not uniform
as a result ofmechanical stability or jamming. Additionally, themaximal
surface shape parameter p of superballs already studied is 3.0 [24, 27,
28],which is far from that of the ideal cube. The evolution of the random
packings of superballs varying from sphere to cube and the maximal
value on the packing density curve are still not well described. Mean-
while, the surface shape effects on the random packings of
superellipsoids with different aspect ratios have not been well studied.

In order to compare the packing densities of different shaped parti-
cles in a same random state, we introduced the concept of the Maxi-
mally Dense Random Packing (MDRP) [19, 43, 44]. The MDRP is
defined as the densest packing in the random state inwhich the particle
positions and orientations are randomly distributed as quantified by
specified order metrics. The packing density of the MDRP corresponds
to a sharp transition in the order map, which characterizes the onset
of nontrivial spatial correlations among the particles [43]. The MDRP is
regarded as a glass state of hard particle systems with an artificial con-
straint and is always random. For particles which are good glass for-
mers, the packing density of the MDRP is close to that of the RCP or
MRJ packing, such as the MDRPs of octahedra [43] and spherocylinders
[19]. However, for bad glass formers which are easy to crystalize, the
MDRP is more random with lower packing density, such as the MDRPs
of cuboids [44]. Two approaches have been utilized to obtain the
MDRP. One is the enumeration method [19, 43], in which the MDRP is
chosen as themaximally dense one among varieties of randompackings
already generated by common random packing algorithms. However,
for bad glass formers, the enumeration method may fail to obtain the
MDRP because the packing structures are easy to crystalize with com-
mon random packing algorithms. The other method is the inverse
Monte Carlo packing method [44] in which the MDRP is directly gener-
ated via an artificial constraint. The artificial constraint is carried out via
the order parameters and is used to prevent the presence of seed crys-
tals or nuclei around which crystal structures form creating a solid.

In this work, we obtain theMDRPs of hard superellipsoids via the in-
verse Monte Carlo packing method [44] in which the formation of the
local ordered structures is suppressed rigorously. The normalized local
cubatic order parameter [44] and a new introduced normalized local
bond-orientational order parameter are used to evaluate the local
order degrees of orientations and bond-orientations, respectively. The
influences of surface shape parameter p and aspect ratio w on the ran-
dom packing densities are systematically investigated. As for the aspect
ratio effects, all the packing density curves show “M” typewith themin-
imal value at w = 1.0 and two maximal values at w ≈ 0.7, 1.5. Mean-
while, the packing density curves also show “M” type for surface
shape effects. The maximal packing density is obtained at p ≈ 0.7, 2.0
and the minimal packing density is obtained at p = 1.0. Therefore, the
surface shape and aspect ratio effects for superellipsoid packings are
decoupled. The local analyses of the MDRPs of superellipsoids are car-
ried out via the Voronoi tessellation [45]. Two linear relationships be-
tween the mean and standard deviation of the reduced Voronoi cell
volume are obtained when the surface shape parameter p≤1.5, or
p≥2.0. Our findings should lead to a better understanding of random
packings.

The rest of the paper is organized as follows: in Section 2, we
introduce the superellipsoidmodel and the overlap detection algorithm
we use. Then we give the definitions of the order parameters and de-
scribe the inverseMonte Carlo packingmethodwhich is applied to gen-
erate the MDRPs. Finally, the simulation results of the MDRPs of
superellipsoids are discussed in Section 3, and concluding remarks are
provided in Section 4.

2. Methodology

In this part, we firstly introduce the superellipsoid model [29] and
the Perram and Wertheim (PW) potential [46] used to detect overlaps
between superellipsoids. Then the order parameters are proposed to
evaluate the orientational and bond-orientational order degrees of
superellipsoid packings, including the normalized local cubatic order
parameter [44] and a new normalized local bond-orientational order
parameter. Finally, we describe the inverse Monte Carlo packing
method which is used to generate the MDRPs of superellipsoids.

2.1. The superellipsoid model

The superellipsoid model [29] is a rich geometric model and is con-
venient to study the particle shape effects. It is believed that 80% of
shapes of solids can be represented by superellipsoids [30, 31].
Superellipsoids are used to model symmetric particle geometries with
a range of aspect ratios and edges ranging from rounded to spiky in
shape [32]. The surface function of a superellipsoid in the local Cartesian
coordinates is defined as [29].

x
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b
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��� ���� �2p1 ¼ 1:0 ð1Þ

where a, b and c are the semi-major axis lengths in the direction of x, y,
and z axes, respectively, and p0, p1 are the surface shape parameters
determining the sharpness of particle edges. The superellipsoids degen-
erate to ellipsoidswhen p0= p1=1.0, and are superballs if p0= p1, a=
b= c. Moreover, the surfacewill be an ideal octahedronwith p0= p1=
0.5, a= b= c and a cube with p0 = p1 =+ ∞, a= b= c. In this work,
we focus on the random packings of superellipsoids which are elon-
gated or compressed superballs with a = b and the surface shape pa-
rameter p = p0 = p1. The aspect ratio w, which is defined as w = c/a,
is used to describe the aspect ratio effects. Then the surface function
in Eq. (1) degenerates to
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Fig. 1 shows some typical superellipsoid examples used in this work
with differentp andw. The surface shapeparameter p ranges from0.7 to
5.0 with the aspect ratiow varies from 0.5 to 2.0. Meanwhile, the pack-
ings of octahedra and cuboids, two extremities of superballs with p
equal to 0.5 and infinity, respectively, are also studied via the ideal poly-
hedral model [43]. The shapes of superellipsoids are close to octahedra
when p is smaller than 1.0 and are close to cuboids when p is larger
than 1.0. Meanwhile, the superellipsoids are compressed if w is smaller
than 1.0 and are elongated if w is larger than 1.0, as seen in Fig. 1.

The overlap detection algorithm we use is based on the Perram and
Wertheim (PW) potential introduced in ref. [46]. The generalization of



Fig. 1. Some typical superellipsoid examples used in thisworkwith different surface shape
parameter p and aspect ratio w.

Fig. 2. Illustration of the scaling factor μ in the PWoverlap potential. (a) μ b 1, ζ(A,B) b 0, A
and B are overlapping. (b) μ = 1, ζ(A,B) = 0, A and B are externally tangent. (c) μ N 1,
ζ(A,B) N 0, A and B are disjoint.
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the PWpotential for superellipsoids can be found in ref. [38, 47]. The PW
overlap potential ζ(A,B) between two particles A and B is defined
through an optimization problem

ζ A;Bð Þ ¼ μ2−1 ¼ max0≤λ≤1 min r!c
λζA r!c

� �
þ 1−λð ÞζB r!c

� �h i
ð3Þ

where r!c ¼ ðx; y; zÞ is the Eulerian coordinates of a point in space,
ζAð r!cÞ and ζBð r!cÞ are the shape functions that define the surface
of particle A and B, respectively. The ζAð r!cÞ should satisfy the fol-
lowing condition

ζA r!c

� �
b0; r!c is in particle A

ζA r!c

� �
¼ 0; r!c is on the surface of particle A

ζA r!c
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>>>:
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For a superellipsoid particle A, the shape function is defined as
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where ð~x; ~y;~zÞ ¼ O−1ð r!c− r!AÞ are the relative coordinates of r!c with
respect to the particle A centered at r!A ¼ ðx0; y0; z0Þwith the reference
orientation matrix O ¼ ½ e!1; e

!
2; e
!

3�. Here e!1; e
!

2; e
!

3 is the directions
of the three main axes of particle A.

The μ in Eq. (3) is the scaling factor whichmeans that the particles

A and B will be in external tangency at the point r!o
c if they are

rescaled by μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζðA;BÞp

with their positions and orientations

unchanged. Here r!o
c is the optimal solution of r!c . μ = 1 means

that the particles A and B are just externally tangent and A, B need
not to be enlarged or shrunk. In a similar way, μ N 1 means that the
particles A, B need to be enlarged to make them externally tangent,
i.e. they are originally disjoint. μ b 1 means that the particles A, B
need to be shrunk tomake them externally tangent, i.e. they are orig-
inally overlapping. The overlap detecting samples of two particles A
and B with μ b 1, μ = 1 and μ N 1 are shown in Fig. 2(a), (b) and (c),
respectively. Therefore, the sign of ζ(A,B) gives us an overlap crite-
rion

ζ A;Bð Þb0; if A and B are overlapping
ζ A;Bð Þ ¼ 0; if A and B are externally tangent

ζ A;Bð ÞN0; if A and B are disjoint

8<
: ð6Þ

In this work, the PW overlap potential ζ(A,B) in Eq. (3) is calcu-
lated via the Newton–Raphson (NR) method with the first initial
solution r!c0 ¼ ð r!B þ r!AÞ=2 and λ ¼ 0:5. If the result for the first ini-
tial solution is not convergent, another initial solutionwith a fluctuation
at r!c0 is chosen until the result is convergent. The NR method works
well for the superellipsoids we studied and its details can be found in
ref. [38, 47].
2.2. The order parameters

2.2.1. The normalized local cubatic order parameter

The normalized local cubatic order parameter ~S4local is based on the
cubatic order parameter S4 defined by Batten et al. [37] and is used to
evaluate the local cubatic order degree of the packings of symmetrical
particles with three axes [44]. The average orientation correction of par-
ticles with n nearest neighbor particles is evaluated by S4local, n which is
defined as

S4local;n ¼ 1
N
∑N

i¼1 max
j

1
14n

∑n
k¼1∑

3
l¼1 35 cos4θij;kl−30 cos2θij;kl þ 3


 �� �
ð7Þ

where N is the total number of particles in the packing system, n =
1, 2, 3…, 26 represents the number of particles which are closest to
the ith particle, j, l = 1, 2, 3 are the three main axes of particles. cos

θij;kl ¼ j u!ij∙ u
!

klj with u!ij the ith central particle's jth axis and u!kl the
lth axis of the kth neighbor particle of the ith central particle. We
note that there are 26 neighbor particles around a particle in the
simple cubic lattice packing of cubes and 26 is the maximal number
of the neighbor particles in superellipsoid packings we studied. In
order to use a universal way to evaluate the local order degree for
all superellipsoid packings, we choose 26 as the maximal number
of n. Moreover, 26 is large enough to control the local cubatic
order in superellipsoid packings. We have verified that if the 26
local cubatic order parameters S4local, n are small enough, the values
of S4local, 27, S4local, 28, S4local, 29 and so on are very small as well.

The values of S4local, n in the random state are calculated via the
Monte Carlo tests [44] and are found in Gaussian distributions. The
means S4local, nμ and standard deviations S4local, nσ are linear to 1=

ffiffiffi
n

p
and 1

=
ffiffiffiffiffiffiffi
Nn

p
, respectively

Sμ4local;n ¼ 0:30972=
ffiffiffi
n

p

Sσ4local;n ¼ 0:38720=
ffiffiffiffiffiffiffi
Nn

p
(

ð8Þ



Fig. 3. (a) The relationship between the means S4local, nμ and the number of nearest neighbors n for different particle amount N. The S4local, n
σ is proportional to 1=

ffiffiffi
n

p
with a slope

0.30972 and is not related to N. The correlation factor of the fitted line is R2 = 0.99876. (b) The relationship between the standard deviations

S4local, n
σ and the number of nearest neighbors n for different particle amount N. The S4local,nσ is proportional to 1=

ffiffiffiffiffiffiffi
Nn

p
with a slope 0.38720. The correlation factor of the fitted

line is R2 = 0.99950.
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as shown in Fig. 3(a) and (b). Then the ~S4local;n is normalized as

~S4local;n ¼
S4local;n−Sμ4local;n

Sσ4local;n

�����
����� ð9Þ

and the normalized local cubatic order parameter ~S4local is

~S4local ¼ maxn ~S4local;njn ¼ 1;2;3…;26
n o

: ð10Þ

For a perfectly ordered lattice packing of particles with three axes,
both the S4 and S4local, n are unity. However, in a quasi-random packing
[48] with large amounts of local ordered clusters, the S4 is small while
the ~S4local is very large. In a random packing with no obvious global or
local orientational order, both the S4 and ~S4local are small.

2.2.2. The normalized local bond-orientational order parameter

The normalized local bond-orientational order parameter ~Q6local is
similar to the original bond-orientational order parameter Q6 [49],
which is an important order parameter when describing glass transi-
tions [50–52] and crystalline clusters [53–55]. TheQ6 is calculated as fol-
lows [49, 56].

Q6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π
13

∑m¼6
m¼−6
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∑Nb
i¼1Y6m θi;φið Þ

����
����2

s
ð11Þ

where Nb is the total number of neighbor bonds of all particles in the
system, θi and φi are the polar and azimuthal angles of bond i, Ylm
(θ,φ) are the spherical harmonics. A set of methods are used to judge
whether two particles are neighbors [57]. However, the value ofQ6 is in-
finitesimally small in a random packing system while the exact value
varies slightly depending on the definition of neighbors.

In order to evaluate the average bond-orientation correction of par-
ticles with n nearest neighbor particles, the local bond-orientational
order parameter Q6local, n is introduced as

Q6local;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π
13
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m¼−6
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N
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1
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s
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where N is the total number of particles in the packing system, n repre-
sents the number of the nearest neighbor particles of the ith particle, θij,
φij are the polar and azimuthal angles of the bond formed by particle i
and j. Here we choose n = 1, 2, 3…, 26 to evaluate the bond-orienta-
tional order degrees of different sized local structures around the ith
particle. We also choose 26 as the maximal number of n for the reasons
mentioned in Section 2.2.1.

The values of Q6local, n in a random system with limited particle
amount cannot accurately be zero due to the limited particle amount
N and the number of nearest neighbors n. Therefore, the Monte Carlo
test [19, 43, 44] is introduced to evaluate the values of Q6local, n in the
random state. For each n ∈ {1,2,3…,26}, N ∙ n unit vectors with random
directions are uniformly generated in the space, representing the total
bonds used to calculate Q6local, n in a packing system with N particles.
Then the Q6local, n is calculated as Eq. (12). Finally, the test is repeated
10,000 times and the results are shown in Fig. 4.

Fig. 4(a) shows the probability distribution of Q6local, 1 over 10,000
samples with N = 1000. The distribution is fitted by a Gaussian
distribution function with the correlation factor R2 = 0.998. The mean
Q6local, 1
μ and standard deviation Q6local, 1

σ calculated from the fitted
Gaussian distribution are 0.03068 and 0.00611, respectively. Mean-
while, the results of Q6local, 26 are shown in Fig. 4(b) with Q6local, 26

μ =
0.00603, Q6local, 26

σ = 0.00123, and R2 = 0.997. The values of Q6local, n

for other N and n are in Gaussian distributions as well. Moreover, we
find that both themean Q6local, n

μ and standard deviation Q6local, n
σ are lin-

ear to 1=
ffiffiffiffiffiffiffi
Nn

p
with

Qμ
6local;n ¼ 0:98123=

ffiffiffiffiffiffiffi
Nn

p

Qσ
6local;n ¼ 0:19379=

ffiffiffiffiffiffiffi
Nn

p
(

ð13Þ

as shown in Fig. 4(c) and (d). Then the ~Q6local;n is normalized as

~Q6local;n ¼
Q6local;n−Qμ

6local;n

Qσ
6local;n

�����
����� ð14Þ

and the normalized local bond-orientational order parameter ~Q6local is

~Q6local ¼ max
n

~Q6local;njn ¼ 1;2;3…;26
n o

ð15Þ

The ~Q6local is large in an ordered packing and is small in a random
packing.



Fig. 4. (a) Histograms of the relative frequency of Q6local, 1 over 10,000 samples with N=1000. The data are fitted by a Gaussian distribution with Q6local, 1
μ =0.03068, Q6local, 1

σ =0.00611
and R2 = 0.998. (b) Histograms of the relative frequency of Q6local, 26 over 10,000 samples with N=1000. The data are fitted by a Gaussian distribution with Q6local, 26

μ =0.00603, Q6local, 26
σ =

0.00123 andR2=0.997. (c) The relationship between themeanQ6local, n
μ and thenumber of nearest neighborsn for different particle amountN. TheQ6local, n

μ is proportional to1=
ffiffiffiffiffiffi
Nn

p
with a slope

0.98123 and R2 = 1.00000. (d) The relationship between the standard deviation Q6local, n
σ and the number of nearest neighbors n for different particle amount N. The Q6local, n

σ is proportional to

1=
ffiffiffiffiffiffi
Nn

p
with a slope 0.19379 and R2 = 0.99995.
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2.3. The inverse Monte Carlo packing method

The inverse Monte Carlo packing method [44] based on stochastic
optimization allows one to generate maximally dense packing configu-
rations of hard particles with a controllable degree of order/disorder
quantified via prescribed order parameters. This method is based on
the adaptive shrinking cell (ASC) method [58, 59]. In the inverse
Monte Carlo packing method, the particles are randomly translated or
rotated. Theboundary of thepacking system isfixed to be cubicwithpe-
riodical boundary conditions in three directions and is allowed to com-
press but not shear. Besides the non-overlapping condition, the particle
movement and boundary deformation are also rejected if the calculated
order parameters are larger than the prescribed values, which is
regarded as an artificial constraint. The prescribed values of order pa-
rameters are set to be small enough to prevent the presence of seed
crystals or nuclei around which crystal structures form creating a
solid. Therefore, the crystallization is inhibited and the system becomes
a supercooled liquid and turns into glass. Meanwhile, the packing con-
figuration is compressed as slow as possible to make the finial packing
maximally dense. Finally, we generate a MDRP which is the maximally
dense packing in the random state. Here we use the normalized local
cubatic order parameter ~S4local and the normalized local bond-orienta-
tional order parameter ~Q6local introduced above to control the local
order degrees of orientations and bond-orientations, respectively.
At the beginning of a common slow compression progress, the pack-
ing density can be increased rapidly while the packing structure main-
taining very random with the order parameters approach to zero.
Then the further increase of packing density must be accompanied
with the increase of order parameters. Therefore, the packing density
of the MDRP corresponds to a sharp transition on the upper bound of
the order map [19, 43], which characterizes the onset of nontrivial spa-
tial correlations among the particles.

In the inverse Monte Carlo packing method used in this work, the
packing configuration is compressed as slow as possible tomake thefin-
ial packing maximally dense. However, the packing configuration can-
not be further compressed because the prescribed values of order
parameters for acceptance is 0.5,which is very small and efficiently con-
trols the order degree of the packing configurations [44], and the exact
values of order parameters~S4local and ~Q6local are about 0.5with a few sim-
ulation errors smaller than 0.01. The packing density of thefinal packing
configuration corresponds to the upper boundwhen the order parame-
ters are equal to 0.5 in the order map. The final packing is the MDRP of
superellipsoids on a same random degree evaluated by the order pa-
rameters. Therefore, all the packings we generated via the inverse
Monte Carlo packing method are in the same random state and the
exact values of order parameters ~S4local and ~Q6local are all about 0.50
with a few simulation errors smaller than 0.01. More details can be
seen in ref. [44].



Fig. 6. The relationship between the packing densities φ of the MDRPs of superballs and
the surface shape parameter p. The results are compared with literature results. The
packing density curve of the MDRPs is in “M” type with the minimum at p = 1.0 and
two maximums at p ≈ 0.7,2.0, respectively. For p ≤ 1.5, the MDRPs is similar to the
other results. However, the MDRPs is more random with lower packing density when p
is much larger. The insets show the packing configurations of the MDRP and MRJ,
respectively, with p = 2.5.
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We note that previous works [43, 44] show that size effect on the
packing density is negligible if the total particle number is larger than
125.Meanwhile, the computational cost increases rapidly as the particle
number increases. As a compromise between accuracy and computa-
tional cost, we chose the particle number N to be 200.

3. Results and discussion

As mentioned above, we generate the MDRPs of superellipsoids via
the inverse Monte Carlo packing method. All the results of
superellipsoids are averaged over 4 times and the error bars in Fig. 6
and Fig. 7(a), (b) represent the standard deviations. Some finial packing
configurations with 200 superellipsoids are shown in Fig. 5. All the
packings are very random with the order parameters ~S4local and ~Q6local

smaller than 0.5. The packing densities of the MDRPs of superballs and
superellipsoids are demonstrated below and themicroscopic properties
are analyzed via the Voronoi tessellation [45].

3.1. The MDRPs of superballs

The packing densities of superballs with different surface shape pa-
rameter p are shown in Fig. 6 and are compared with the literature re-
sults. The packings generated by Jiao et al. are in the state of MRJ,
while the packings generated by Delaney [24] and Zhao [27] may not
be in the same state, some of them are random and others are ordered.
We obtain theMDRPs of superballs with a wider range (0.7 ≤ p ≤ 5.0) of
the surface shape parameter p. The packing density curve of theMDRPs
is in “M” type with theminimum at p=1.0 and twomaximums at p≈
0.7, 2.0. The packing densities of theMDRP of spheres (p=1.0) and oc-
tahedra (p=0.5) are 0.644 and 0.701, respectively, which are similar to
those of the RCPs [1] orMRJs [9, 60] with no frictions.We note that both
the sphere and octahedron are good glass formers. Meanwhile, the
packing density of the MDRP of cubes (p = + ∞) is 0.642, lower than
0.734 which is the packing density of the ideal jamming point of cubes
at zero shear stress with abundant small ordered clusters obtained by
Smith et al. [61]. While the MRJ of cubes is still not obtained or ever
not exist [60] and the packing density of the RCP of cubes generated
by different methods varies significantly with different order degrees
[62–64]. This is because cube is easy to crystalize and is not a good
glass former.

As shown in Fig. 6, the packing densities of theMDRPs are similar to
the other resultswhen p ≤ 1.5, whichmeans that all these superballs are
good glass formers. However, the MDRPs are more random with lower
packing density when p is larger than 1.5. This is because the superballs
with large p are not good glass formers and their packings are easy to
crystallize, as discussed by Delaney et al. in ref. [24]. The inserts in Fig.
Fig. 5. The packing configurations of 200 superellipsoids with different surface shape
parameter p and aspect ratio w. All the packings are very random with the order
parameters S�4local and Q�6local smaller than 0.5.
6 show the packing configurations of superballs with p = 2.5 for
MDRP and MRJ [28], respectively. The MRJ packing configuration with
p = 2.5 is obtained via the adaptive shrinking cell (ASC) method [58,
59] and is similar to that generated via the DTS algorithm in ref. [28].
The MDRP configuration is random without obvious local or global
order structures but may not be mechanically stable or jammed. How-
ever, small ordered clusters having three to four particles are abundant
in the MRJ packing while no obvious global order structures are ob-
served, as can be seen in the insert of Fig. 6. Moreover, the packing con-
figuration of superballs with p = 2.5 generated by Delaney et al. is
globally ordered, which is shown in Fig. 3(d) in ref. [24].

3.2. The MDRPs of superellipsoids

The effects of aspect ratiow on the packing densities of theMDRPs of
superellipsoids are shown in Fig. 7. All the packing density curves are in
“M” typewith theminimum atw=1.0 and twomaximums atw≈ 0.7,
1.5. Fig. 7(a) and (b) show the packing densities of the MDRPs of
superellipsoids with p ≤ 1.0 and p ≥ 1.0, respectively. For p = 0.5, the
superellipsoids are ideal octahedra and the random packing density
changes little when w varies from 0.7 to 1.5. The distinction between
the minimum and maximums in the “M” type is quite small. When p
varies from 0.7 to 1.0, the packing density curve moves down and
keeps the “M” type. When p is larger than 1.0, the packing density
curve still keeps the “M” type. However, the packing density curve
firstly moves up and reaches the top at p ≈ 2.0. Then the packing den-
sity curve moves down until p = + ∞ for which the superellipsoids
are cuboids.

The MDRPs of superellipsoids with p=1.0, 1.5, 2.0 and 2.5 are com-
pared to literature results in Fig. 7(c), (d), (e) and (f), respectively.When
p = 1.0, the superellipsoids degenerate to ellipsoids and all the packing
curves obtained by the researchers are in “M” type. The packing density
curve of theMDRPs is almost the same as the results of Delaney et al. [24]
and Donev et al. [22] which were obtained via the algorithms based on
the Lubachevsky-Stillinger (LS) algorithm [65]. While the results of
Zhou et al. [25] and Zhao et al. [27] are slightly lower, because they
used the algorithms based on the particle depositing packing method.
When p = 1.5, the packing density curve of the MDRPs is similar to
that of Delaney et al.'s work [24] except the minimum value at w =
1.0. The packing density of the MDRP with p = 1.5, w = 1.0 is a little



Fig. 7. (a) The relationships between the packing densities φ of the MDRPs and the aspect ratio w with the surface shape parameter p = 0.5, 0.7, 0.8, 0.9 and 1.0. (b) The relationships
between the packing densities φ of the MDRPs and the aspect ratio w with the surface shape parameter p = 1.0, 1.5, 2.0, 2.5, 3.0, 5.0 and + ∞. (c-f) The packing density curves of the
MDRPs with p= 1.0,1.5,2.0 and 2.5 are compared to literature results in (c), (d), (e) and (f), respectively.
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smaller than that of Delaney et al.'s work [24]. This is because the order
degree of the superellipsoid packing with p = 1.5, w = 1.0 obtained by
Delaney et al. is a little higher, as described in ref. [24]. The packing den-
sity curves of theMDRPs are still in “M” typewhen p=2.0 and 2.5. How-
ever, the packing density curves in Delaney and Zhao's work are not in
“M” type any longer and are higher than those of the MDRPs. Their
onlymaximumvalues are obtained atw=1.0,where the superellipsoids
are superballs which aremuch closer to ideal cubes. This is because their
packingsmust bemechanically stable or jammed. The randomnessmust
be sacrificed and order structures dominate to keep the packing
mechanically stable or jammed when the particle shape is close to an
ideal cube. Therefore, the final packings of superellipsoids in their work
are not always in the same random state and the aspect ratio effects
are not uniform as a result of mechanical stability or jamming.

We also investigate the surface shape effects on the MDRPs of
superellipsoids. Fig. 8 shows the relationship between the surface
shape parameter p and the random packing densities of superellipsoids
with different aspect ratio w. All the packing density curves show “M”
type with the minimum at p = 1.0 and two maximums at p ≈ 0.7,
2.0. We conclude that for the aspect ratio effects, all the packing density



Fig. 8. The relationship between the surface shape parameter p and the random packing
densities of superellipsoids with the aspect ratio w = 0.5, 0.7, 1.0, 1.5 and 2.0. All the
packing density curves show “M” type with the minimum at p = 1.0 and two
maximums at p≈ 0.7, 2.0.
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curves show “M” type with various surface shape parameters. For the
surface shape effects, the packing density curve is also in “M” type
with various aspect ratios. Both slightly changing the surface shape
and elongating (compressing) the particles will increase the random
packing density. The effects of surface shape and aspect ratio are
decoupled and themaximumof the randompacking density is obtained
at p≈ 0.7, 2.0 andw≈ 0.7, 1.5, as shown in Fig. 9, which demonstrates
all the packing densities with different p and w in a map. Four maxi-
mums are observed in Fig. 9 at p ≈ 0.7, w ≈ 0.7; p ≈ 0.7, w ≈ 1.5; p
≈ 2.0,w≈ 0.7 and p≈ 2.0,w≈ 1.5, respectively. The packing densities
of the four maximums are all about 0.738. Additionally, the packing
density of spheres (p=1.0,w=1.0) is a local minimum, which is con-
sistent with the Ulam's conjecture [60] for random packings.

Moreover, we conjecture that the aspect ratio effects are applicable
to all the symmetric particles with three equal main cross sections
when w = 1.0, such as superballs, spherocylinders, truncated cubes,
sphero-cubes and sphero-octahedra, of which all the three main cross
sections are superdisks, disks, truncated square, rounded square and
rounded rhombus, respectively. If these particles are compressed or
Fig. 9. The packing density map of superellipsoids for different surface shape parameter p
and aspect ratiow.
elongated in onemain direction, themaximum randompacking density
will be obtained when the uniaxial aspect ratiow≈ 0.7, 1.5, which will
be verified in the future work.

3.3. The Voronoi analysis

In recent years, the Voronoi analysis [45] of non-spherical parti-
cle packings has become a standard means for structural analysis.
The Voronoi channel method [66], the space discretization method
[67–69] and the set Voronoi diagram method [70–72] are success-
fully developed to carry out the Voronoi tessellation of non-spher-
ical particle packings. In this work, the set Voronoi diagram
method is used to tessellate the superellipsoid packings and inves-
tigate the microcosmic properties of superellipsoid packings. In the
set Voronoi diagram method, the surface of each particle is
discretized into point sets. Then the Voronoi cells of all the discrete
points are computed. Finally, the Voronoi cell of each particle is
united by its own point sets. More details about the set Voronoi di-
agram method can be found in ref. [72]. Here we discretize the par-
ticle surface via the polar coordinates and the Voro++ program
[73] is used to compute the Voronoi cells of discrete points. We in-
vestigate the Voronoi cell volume of particles via the reduced local
Voronoi cell volume Vlocal which is defined as

Vlocal ¼
Vcell

Vp
ð16Þ

where Vp is the volume of the inner particle and Vcell is the volume
of the particle's Voronoi cell. Here we use the reduced local Voronoi
cell volume Vlocal rather than the local packing density, because the
mean of Vlocal is accurately equal to the inverse of the global pack-
ing density φ.

A superellipsoid (p=2.5,w=1.0) surface discretized by 2246 points
which are used to compute the Voronoi cells of particles is shown in
fig. 10(a). The polar and azimuthal angles of these points are uniformly
distributed. More points are distributed near the corners and edges,
which are helpful to improve the accuracy. Fig. 10(b) shows the
probability distribution of the reduced Voronoi cell volumes Vlocal in a
MDRP of superellipsoids with p = 2.5, w = 1.0. The data are fitted by a
Gaussian distribution function with a correlation factor R2 = 0.997. The
mean Vlocal

μ and standard deviation Vlocal
σ are 1.390 and 0.064, respec-

tively. We note that all the probability distributions of Vlocal for different
p and ω are in Gaussian distributions.

The accuracy of the set Voronoi diagram method depends on the
number of discretized points and the particle shapes. The number of
points used to discretize the superellipsoid surface is called the resolu-
tion [71]. The higher the resolution is, the more accurate the Voronoi
cells will be. Fig. 10(c) shows the relative errors of theVlocalσ as a function
of the resolution. Here five typicalMDRPs of superellipsoids, which con-
tains the sphere and four extreme shaped superellipsoids studied in this
work, are used to validate the resolution. The relative errors of Vlocalσ de-
crease rapidly with the increase of the resolution, and the errors are
generally smaller than 3.0% if 2246 points are used. However, the com-
putational cost increases rapidly as the resolution increases. As a com-
promise between accuracy and computational cost, we use 2246
points to discrete the surfaces of all the superellipsoids studied in this
work.

The relationship between the Vlocalσ and Vlocal
μ are shown in Fig. 10(d).

When p is equal to 1.0, the superellipsoids degenerate to ellipsoids and a
linear relationship is found between the Vlocal

σ and Vlocal
μ = 1/φ, which

means that the standard deviation of the reduced local Voronoi cell vol-
ume depends only on the global packing density of random ellipsoid
packings. This phenomenon is also shown in ref. [69, 70], and was
used to investigate the relationship between the average number of
contacts and the global packing density in a random packing. Moreover,
the Vlocalσ and Vlocal

μ are in the same linear relationship when p is smaller



Fig. 10. (a) A superellipsoid (p=2.5,w=1.0) surface (yellow) discretized by 2246 points (blue)which are used to compute the Voronoi cells of particles. (b) The probability distribution
of the reduced Voronoi cell volumes Vlocal in aMDRP packing of superellipsoids with p=2.5,w=1.0. The data are fitted by a Gaussian distribution functionwith a correlation factor R2=
0.997. (c) The relative errors of the Vlocal

σ as a function of the resolution. The MDRPs of spheres and four extreme shaped superellipsoids studied in this work are used to validate the
resolution. (d) The relationship between the mean Vlocal

μ and standard deviation Vlocal
σ calculated from the packing configurations of superellipsoids with different p and w. The error

bars are averaged over four times. Two linear relationships are observed.
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than 1.5 regardless of the aspect ratios. However, another linear rela-
tionship is found when p is larger than 2.0 for different aspect ratios.
Therefore, the linear relationship between the standard deviation of
Fig. 11. The sphericities of the superellipsoids studied in thiswork. (a) The relationship between
p. (b) The relationship between the sphericity ψ and surface shape parameter p of superellipso
the reduced local Voronoi cell volume and the inverse of global packing
density is not always the same, and is influenced by the particle surface
shape parameter.
the sphericityψ and aspect ratiow of superellipsoids for different surface shape parameter
ids for different aspect ratio w.



Fig. 12. The relationships between the packing density φ and the sphericity ψ for
superballs (w = 1.0) and ellipsoids (p = 1.0).
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3.4. The sphericities of superellipsoids

The sphericity, defined by Wadell in 1935 [74], is one of the most
commonly used parameters in describing the shape of a particle [75].
The sphericity ψ is defined as the ratio of the surface area of a sphere
which has the same volume as the given particle to the surface area of
that particle.

ψ ¼ π1
3 6Vp

 �2

3

Sp
ð17Þ

where Vp and Sp are the volume and surface area of a particle, respec-
tively. We calculate the sphericities of the superellipsoids studied in
this work. Fig. 11(a) shows the relationship between the sphericity ψ
and aspect ratiow of superellipsoids for different surface shape param-
eter p. The ψ reaches the maximum at w = 1.0 for different p. Mean-
while, the ψ reaches the maximum at p = 1.0 for different w, as
shown in Fig. 11(b).

Fig. 12 shows the relationships between the sphericity ψ and pack-
ing density φ for superballs and ellipsoids. The surface shape parameter
p ranges from0.7 to 3.0. Theφ−ψ curve is uniform for superballswith p
N 1.0 and p b 1.0, whichmeans that the “M” typed packing density curve
of superballs in Fig. 6 is folded into a single-peaked curve with the
Fig. 13. The relationships between the packing density φ and the sphericity ψ for different supe
Superellipsoids with the surface shape parameter p= 1.0, 1.5, 2.0, 2.5.
abscissa changed from p intoψ. In other words, the surface shape effects
on the random packing density of superballs are equivalent if they have
the same sphericity. The φ− ψ curve is also uniform for ellipsoids (p=
1.0) withw N 1.0 andw b 1.0, meaning that the “M” typed packing den-
sity curve of ellipsoidswith p=1.0 in Fig. 7(a) and (b) is also folded into
a single-peaked curve with the abscissa changed from w into ψ. Mean-
while, the “M” typed packing density curves of superellipsoids with
0.7 ≤ p ≤ 2.5 in Fig. 7(a) and (b) are folded into single-peaked curves
with the abscissa changed from w into ψ, which are shown in Fig. 13
(a) and (b). Therefore, the compressed and elongated aspect ratio ef-
fects on the random packing density of superellipsoids are also equiva-
lent if they have the same sphericity. Moreover, the φ − ψ curves with
0.7 ≤ p ≤ 2.5 are almost in the same type.

To summarize, the surface shape effects on the randompacking den-
sity of superballs are equivalent if they have the same sphericity. The
compressed and elongated aspect ratio effects on the random packing
density of superellipsoids are also equivalent if they have the same
sphericity.

4. Conclusion

In this work, the MDRPs of superellipsoids are generated via the in-
verse Monte Carlo packing method. The normalized local cubatic order
parameter and a newnormalized local bond-orientational order param-
eter are used to evaluate the order degrees of orientations and bond-ori-
entations, respectively. We obtain the MDRPs of superellipsoids with a
wider range of the surface shape parameter. All the superellipsoid pack-
ings we generated are in the same random state and no obvious order
structures exist. The MDRPs are more randomwith lower packing den-
sities than literature results when the superellipsoids are close to ideal
cubes. The local analyses of the MDRPs of superellipsoids are carried
out via the Voronoi tessellation and two linear relationships between
the mean and standard deviation of the reduced Voronoi cell volumes
are obtained.

We find uniform and decoupled shape effects on theMDRPs of hard
superellipsoids. Both slightly changing the surface shape and elongating
(compressing) the particles will increase the random packing density.
The influences of surface shape parameter p and aspect ratio w on the
random packing densities are decoupled and the aspect ratio effects
are applicable to all the symmetric particles with three same main
cross sections when w = 1.0. The compressed and elongated aspect
ratio effects on the randompacking density of superellipsoids are equiv-
alent if they have the same sphericity. For the aspect ratio effects, all the
packing density curves show “M” type and do not change the typewhen
p is varying. Meanwhile, for the surface shape effects, the packing
rellipsoids. (a) Superellipsoids with the surface shape parameter p=0.7, 0.8, 0.9, 1.0. (b)
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density curve is also in “M” type and does not change the typewhen the
aspect ratio varies. The maximum of the random packing density is ob-
tained atp≈ 0.7, 2.0 andw≈ 0.7, 1.5 and the packingdensity of spheres
is a local minimum.

The MDRP characterizes the onset of nontrivial spatial correlations
among the particles and is a glass state of hard particle systems. Besides
the states of RCP and MRJ, the MDRP state also provides a comparable
random state for variously shaped particles. It has been applied to inves-
tigate the shape effects on the geometrical random packings under the
same random conditions while the mechanical stability and jamming
are not required. This is a fundamental problem and more MDRPs of
particles with different shapes will be generated to concludemore gen-
eral rules for surface shape and aspect ratio effects on random packings.

Moreover, the normalized local cubatic order parameter and the
normalized local bond-orientational order parameter are applicable to
other shaped particle packings to evaluate the order degree. The local
Voronoi analysis demonstrates that the linear relationship between
the standard deviation of the reduced local Voronoi cell volume and
the inverse of global packing density is not always the same and is influ-
enced by the particle surface shape parameter. Our results lead to a bet-
ter understanding of the shape effects on random packings and are
helpful in guiding the development of theoretical models for particle
packings as well as the granular material design.
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