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Iron disulfide (FeS2) has attracted a lot of interest for photovoltaic and photoelectrochemical applications

due to its favorable electronic and optical properties. The theoretical description of FeS2 has been

confronted with the problem of common density functional approximations failing to correctly account

for the relative stability of pyrite and marcasite polymorphs of FeS2. We address this issue by using the

adiabatic-connection fluctuation-dissipation theorem (ACFDT) in the random phase approximation

(RPA). The relative stability of the two polymorphs is correctly predicted, and a significantly improved

agreement with experiment compared to that from local, semi-local and hybrid functionals is obtained

in terms of the enthalpy of transformation, regardless of the density functional approximations used in

producing the input wave functions for RPA calculations. We attribute the stability of the pyrite phase to

the electron correlation related to the low energy excitation from Fe d states to the S–S s*p state.

Equilibrium volumes very close to the experimental values are predicted for both phases as well. The

contributions of zero-point energy corrections and finite temperature effects are considered and found

to be insignificant compared to dynamical correlation included in the ACFDT-RPA approach. This study

highlights the importance of considering the difference in high-order dynamical correlation as described

by ACFDT-RPA due to the distinction in the Kohn–Sham band structure for a correct description of the

relative stability of competing phases that are energetically very close to each other.
1 Introduction

In recent decades, iron disulde (FeS2) has drawn considerable
attention from both industrial and academic communities as
a competitive candidate working material for efficient and
inexpensive solar energy conversion,1,2 mainly because of its
suitable band gap (0.95 eV), extraordinary absorption coeffi-
cient, non-toxicity and low cost of raw materials. Apart from the
practical synthesis of high-quality pyrite thin lms for photo-
voltaic cells,3,4 applications have also been explored to use FeS2
as an electrocatalyst for photoelectrochemical cells and photo-
assisted hydrogen generation.5,6 In both natural minerals and
synthesized samples, marcasite, another polymorphic phase of
FeS2, is found to coexist with pyrite.7,8 By measuring the heat
capacity of marcasite from 5 to 700 K and that of pyrite from 300
to 780 K, Grønvold and co-workers determined that marcasite is
metastable with respect to pyrite, and the enthalpy of trans-
formation at zero kelvin from marcasite to pyrite is �0.99 �
0.05 kcal mol�1 [�42.9 � 0.2 meV per formula unit (f.u.)].9

Kinetic factors are believed to be important in the formation of
marcasite.7,10 It has been recently shown theoretically by using
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a quasi-thermodynamic model that the surface stability of FeS2
nanoparticles at the nucleation stage plays an essential role in
the pH-controlled phase selection in the hydrothermal
synthesis.11

First-principles electronic structure calculations with Kohn–
Sham (KS) density functional theory (DFT)12,13 have been widely
performed and provided valuable insights to understand the
structural, thermodynamical and electronic properties of
FeS2.14–20 However, highly scattered theoretical results have
been reported regarding the relative stability of pyrite and
marcasite.17–19 Spagnoli et al. carried out DFT calculations with
a range of approximate exchange-correlation (XC) functionals
implemented in several packages.17 It was shown that the local
density approximation (LDA)13 and Perdew–Burke–Ernzerhof
(PBE)21 generalized gradient approximation (GGA) predicted
wrongly that marcasite is more stable than pyrite, while Sun
et al. reported the opposite by LDA.18 In themeanwhile, PBEsol22

and AM05 (ref. 23) XC functionals were shown to be able to
reproduce the correct stability order, but the calculated
enthalpy of transformation from marcasite to pyrite was
underestimated by one order of magnitude compared to
experiment.17 In addition, equilibrium volumes are under-
estimated signicantly compared to the experimental values for
both phases when LDA or PBEsol is used.17,18 Total energy
calculation of both phases with experimental lattice constants
with a Heyd–Scuseria–Ernzerhof (HSE) hybrid functional24,25
J. Mater. Chem. A

http://crossmark.crossref.org/dialog/?doi=10.1039/c8ta00759d&domain=pdf&date_stamp=2018-03-27
http://orcid.org/0000-0002-7877-1994
http://orcid.org/0000-0003-3187-2023
http://dx.doi.org/10.1039/c8ta00759d
http://pubs.rsc.org/en/journals/journal/TA


Journal of Materials Chemistry A Paper

Pu
bl

is
he

d 
on

 1
5 

M
ar

ch
 2

01
8.

 D
ow

nl
oa

de
d 

by
 P

ek
in

g 
U

ni
ve

rs
ity

 o
n 

01
/0

4/
20

18
 0

7:
11

:4
4.

 
View Article Online
suggests a stability preference for pyrite by 5.2 meV per f.u.18

Furthermore, to address the self-interaction error (SIE) in
approximate density functionals, especially for transition metal
compounds,26 the band structure and energetics of FeS2 poly-
morphs are also studied by DFT with the Hubbard-U correction
(DFT + U).17,18 Particularly, Spagnoli and coworkers showed that
it is possible to reverse the stability of marcasite over pyrite
predicted by PBE with a sufficiently large effective Hubbard U
parameter, but other properties, such as equilibrium lattice
constants, are described very badly in that case.17

In this work we investigate the relative stability of pyrite and
marcasite by using the adiabatic-connection uctuation-
dissipation theorem (ACFDT) in the random phase approxi-
mation (RPA), which has been applied to many different
systems with remarkable improvement compared to traditional
density functional approximations.27–30 Although the RPA total
energy is not fully SIE free due to the complete neglect of the
exchange-correlation kernel (i.e. the contribution from
exchange-like and ladder terms in the diagrammatic expansion
of correlation energy), it has proved to be a good approximation,
for example, in the prediction of the cohesive energy and lattice
constants of bulk solids,31–34 the formation energy of transition
metal oxides,35 the energy difference between different poly-
morphs,32,36–38 surface adsorption39 and the interactions in low-
dimensional materials, layered systems and interfaces.40–43

Some features of RPA are believed to be responsible for its
success within these diverse areas:27,29,30 (1) despite SIE in the
RPA correlation term, the exchange term is treated exactly to
remove the unphysical self-interaction in the Hartree energy; (2)
the nonlocal and dynamical correlation is incorporated by
renormalizing the non-interacting KS response function with
the Coulomb kernel, which describes the long-range van der
Waals dispersion interaction seamlessly44 as well as an accurate
dynamical screening effect in the small gap systems; and (3) the
RPA correlation takes partial account of static correlation, e.g.
le–right correlation in hydrogen molecules within the spin-
restricted framework,45,46 and is a good approximation for
systems with multi-conguration nature.47,48 It is therefore of
great interest to investigate the FeS2 phase stability issue by
using the ACFDT-RPA approach, as both pyrite and marcasite
have a small optical band gap near 1 eV.1,49 The correlation
effect might be essential to overcome the obstacle confronted by
traditional density functional approximations in evaluating the
relative stability of the energetically close FeS2 polymorphs.

The paper is organized as follows. The next section describes
the basic theory and computational details employed in this
study. In the third section, we present the main results,
including equilibrium volumes, bulk moduli and relative total
energy of the two FeS2 phases, calculated by ACFDT-RPA and by
various traditional DFAs as well for comparison. We offer
a detailed discussion on the relationship between the RPA
correlation energy and Kohn–Sham band structure and discuss
the contribution from lattice vibrations in evaluating the rela-
tive stability of the polymorphs. In the nal section we
summarize the main ndings with some general concluding
remarks.
J. Mater. Chem. A
2 Theory and method
Total energy in the ACFDT-RPA approach

In the ACFDT framework, the expression for the total energy of
the electron-nucleus system is

EACFDT
tot ¼ TKS + En–n + Ee–n + EH + Ex + Ec (1)

where the six terms on the right-hand side (r.h.s.) are the kinetic
energy of the KS non-interacting electronic system, the elec-
trostatic Coulomb repulsion between nuclei charges, the elec-
tron–nuclei interacting energy, the classical electronic Coulomb
repulsion energy (Hartree energy), the exact exchange energy
and the correlation energy, respectively. Particularly, Ex is the
Hartree–Fock exchange energy calculated by using KS orbitals
{jKS

i }, and the sum of the rst ve terms on the r.h.s. of eqn (1)
is just the Hartree–Fock total energy evaluated with KS orbitals
{jKS

i }, termed as the exact exchange (EXX) total energy
henceforth.

The ACFDT correlation energy Ec in eqn (1) is written as

Ec ¼ � 1

2p

ð1
0

dl

ð
drdr0

1��r� r0
��
ðN
0

du
h
cl
�
r; r0; iu

�� c0
�
r; r0; iu

�i
(2)

where cl(r,r0,iu) is the linear density-response function of the
electronic system with l-scaled Coulomb interaction and
c0(r,r0,iu) is that of the KS system. In principle, cl(r,r0,iu) is
connected with c0(r,r0,iu) by the Dyson equation

cl
�
r; r0; iu

� ¼ c0
�
r; r0; iu

�
þ
ð
dr1dr2c

0ðr; r1; iuÞf lHxcðr1; r2; iuÞcl
�
r2; r

0; iu
�
(3)

where the so-called Hartree-exchange-correlation kernel of the
l-scaled interacting system is written as

f lHxcðr1; r2;uÞ ¼
l

jr1 � r2j þ f lxcðr1; r2;uÞ (4)

with fxc(r1,r2,u) being the exchange-correlation kernel. In RPA,
the non-trivial flxc(r1,r2,u) is neglected and the integration over l
in eqn (2) can be performed analytically, resulting in the RPA
correlation energy

ERPA
c ¼

ðN
0

du

2p
Tr
�
ln
�
1� c0ðiuÞv�þ c0ðiuÞv� (5)

where v is the bare Coulomb interaction and Tr indicates the
trace of the matrix. From a physical point of view, within RPA
the electrons are approximated to respond to the total eld as if
they are non-interacting,50–52 and only the ring diagrams are
evaluated for the polarizability in Feynman diagrammatic
analysis.53

In periodic systems, given the Kohn–Sham eigenfunction
jnk(r) and the corresponding eigenvalue 3nk with the band index
n and wave vector k in the rst Brillouin zone (BZ), obtained by
solving the KS equation, the response function in the reciprocal
space can be expressed as54,55
This journal is © The Royal Society of Chemistry 2018
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c0
GG0 ðq; iuÞ ¼ 1

U

X
n;n0 ;k

2
�
fn0kþq � fnk

�Mk*
nn0
�
q;G0�Mk

nn0 ðq;GÞ
3n0kþq � 3nk � iu

(6)

where U is the volume of the unit cell, fnk the occupation
number and G the reciprocal lattice vector. The factor 2
accounts for the spin multiplicity. Mk

nn0(q,G) is the so-called
oscillator strength56

Mk
nn0(q,G) ¼ hjnk|e

�i(q+G)$r|jn0k+qi. (7)

In principle one may need to solve the KS equation self-
consistently with a local exchange-correlation potential cor-
responding to Ex + ERPAc by solving the corresponding
optimized effective potential (OEP) equation,57 or equivalent
Sham–Schlüter equation.58,59 In this work we restrict our
ACFDT-RPA calculation within a non-self-consistent scheme,
using the KS orbitals and energies from a particular density
functional approximation (DFA) X as the input to calculate
the RPA total energy, and denote such a computational
scheme as RPA@X. We check the dependence of the relative
energy between pyrite and marcasite on the input KS orbital
wave functions and energies by considering several different
DFAs.
Phonon spectra in a nite displacement method

In many cases, lattice vibrations can also play an important role
in determining the thermodynamic stability of crystal pha-
ses.60–62 The vibrational internal energy, consisting of the zero-
point energy (ZPE) and phonon excitation energy at nite
temperature, can be obtained from the phonon spectrum
within the harmonic approximation, which can be calculated by
either using density functional perturbation theory (DFPT)63 or
the nite displacement method (FDM).64–66 The latter is
employed in the present FeS2 study.

In the FDM approach,66 a supercell is constructed and all
possible displacements of the atoms in the primitive cell are
performed to calculate forces on each atom in the supercell. The
force constant matrix F can be calculated as66

Flja;l0 j0b ¼ v2E

vuljavul0 j0b
z � Fl0 j0b

�
ulja
�

ulja
: (8)

where ulja denotes a small displacement of the j-th atom in the l-
cell along the Cartesian direction a, and Fl0j0b(ulja) the resultant
force on the l0j0-th atom in the b direction, with all other atoms
in the supercell xed in their equilibrium positions. Taking into
account the periodicity of the crystal, elements of the dynamical
matrix D(q) are determined by

Dja; j0bðqÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
MjMj0

p X
l0

F0ja;l0 j0be
iq$Rl0 ; (9)

where q denotes the phonon wave vector, and Rl0 the lattice
vector of the l0-th cell. The supercell has to be large enough such
that neglecting the response of atoms out of the supercell, i.e.
truncating the sum over l0 in eqn (9), will not introduce signif-
icant error. The frequency uv(q) of the phonon mode ev(q) can
be obtained by diagonalizing the dynamical matrix D(q) with
This journal is © The Royal Society of Chemistry 2018
D(q)en(q) ¼ un
2(q)en(q), (10)

and the phonon dispersion relation and density of states (ph-
DOS) can be obtained accordingly.

Using the phonon energy spectrum, the vibrational internal
energy (Uvib) at a nite temperature T can be readily evaluated
by

UvibðTÞ ¼
X
q;n

ħunðqÞ


1

2
þ 1

exp½ħunðqÞ=kBT � � 1

�
: (11)

where the rst term in the summation gives the zero-point
energy (ZPE). At temperature T and pressure p, the enthalpy
difference between two crystal phases can be written as the sum
of three contributions,

DH(T) ¼ DEtot + DUvib(T) + pDV (12)

where DEtot and DV are the difference in the ground state energy
and the equilibrium volume of the unit cell between two poly-
morphs, respectively. For solids at low temperature and
ambient pressure, the most important contribution in the
second term is that of ZPE, and the pDV term is in the order of
10�2 to 10�1 J mol�1, which is negligible in the current case.
Computational details

All calculations are performed by using DFT with the projector
augmented wave (PAW) method67 implemented in the Vienna
ab initio Simulation Package (VASP).68 The GW-tuned approxi-
mately norm-conserving PAW pseudopotentials (PPs) are used
in all calculations,69,70 which is important to ensure the
numerical accuracy of the RPA total energy, as demonstrated in
our previous study of the TiO2 phase stability.38 In particular,
the 3s, 3p semi-core states of Fe are treated explicitly in the
valence part. Several different density functional approxima-
tions, including LDA, GGA in the PBE21 and PBEsol22 variants,
GGA + U (PBE + U, PBEsol + U), the HSE06 hybrid functional,24,25

PBE with the D3 correction,71 the van der Waals density func-
tional (vdW-DF) optB88-vdW72 and recently developed meta-
GGA SCAN,73 have been considered to investigate their perfor-
mance in predicting the relative stability of FeS2 polymorphs.
For GGA + U calculations, we have adopted the Dudarev
scheme74 and the effective U parameter is set as 2.0 eV for Fe
d orbitals only, as suggested in a previous study.17 The Gaussian
scheme is used for the occupation of the states near the Fermi
level with a smearing width of 0.05 eV. An energy cutoff of
500 eV for the plane wave expansion of wave functions is used to
optimize the crystal structures. A 6 � 6 � 6 (7 � 6 � 10) G-
centered Monkhorst–Pack k-mesh is employed for numerical
integration over the rst Brillouin zone of a pyrite (marcasite)
primitive cell, corresponding to 24 (96) points in the irreducible
Brillouin zone (IBZ). The electronic energy convergence crite-
rion is 10�7 eV and the criterion for the force convergence is
10�4 eV Å�1 for each atom in LDA, GGA, GGA + U, PBE-D3 and
optB88-vdW calculations, while 10�6 eV and 3� 10�3 eV Å�1 are
set respectively for SCAN and HSE06. To obtain the ground state
energy E0, equilibrium crystal volume Vcell and bulk modulus B0
J. Mater. Chem. A
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Fig. 1 Crystal structures of the two FeS2 polymorphic phases: (a) pyrite
and (b) marcasite. Yellow (blue) spheres represent S (Fe) atoms.
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of each phase within DFA X, a set of crystal structures with
different volumes are optimized by fully relaxing the internal
coordinates and the unit cell shape, and the energy-volume data
are then tted with the Birch–Murnaghan (BM) equation of
state (EOS).75,76 The relative total energy difference between
pyrite and marcasite is dened as DEP–M ¼ E0,P � E0,M, and
a negative DEP–M indicates the stability of pyrite over marcasite,
provided that the contribution from lattice vibration is
negligible.

For non-self-consistent ACFDT-RPA calculations, the energy
cutoff for the planewave expansion is 450 eV, and the Brillouin
zone sampling is the same as the structural optimization. The
input wave functions for RPA calculations are generated by
converging the DFT total energy within 10�8 eV. The wave
functions calculated from LDA, PBE, PBEsol, PBE + U and
HSE06 XC functionals are tested for the dependence of RPA
total energy on the initial input. The frequency integration in
eqn (5) is performed in the Gauss–Legendre scheme, with a 16-
point frequency grid along the axis. Considering the slow
convergence of the RPA correlation energy with respect to the
energy cutoff for the response function, Eccut, the converged Ec is
obtained by extrapolating to innite cutoff according to31

ERPA
c

�
Ec

cut

� ¼ ERPA;N
c þ A�

Ec
cut

�3=2: (13)

where ERPA,Nc is the converged value. We have tested the
convergence of relative ACFDT-RPA total energy with respect to
the energy cutoff and the k points, and the result is converged
within 5 meV with current settings. Since the structure opti-
mization with the ACFDT-RPA approach is computationally
exhaustive, while possible,77 we obtain Vcell, E0 and B0 for
RPA@X by rst performing ACFDT-RPA calculations for the
structures with different volumes, which are optimized within
the corresponding DFA X beforehand, and then tting the
energy-volume data with BM-EOS.

Phonon calculations by FDM are performed by taking
advantage of the PHONOPY code78 as an interface to VASP,
within the functional approximations LDA, PBE and PBEsol. A
2 � 2 � 2 supercell is constructed based on the respectively
optimized structure. The calculated vibrational internal energy
is added to the total energy calculated from DFA X or RPA@X to
determine the enthalpy difference of two phases according to
eqn (12).
3 Results and discussion
Lattice structures, bulk moduli and relative total energy

The structural difference of FeS2 polymorphs has been inten-
sively discussed in the literature.79,80 The conventional unit cell
of pyrite and marcasite consists of four and two FeS2 units,
respectively, as shown in Fig. 1. In the cubic pyrite cell (space
group Pa�3), Fe atoms form a face-centered cubic lattice. The S2
dumbbells occupy the octahedral interstitials and their bonding
axes are aligned along different h111i crystallographic axes
exclusively. The orthorhombic marcasite phase (space group
Pnnm) can be seen as a distorted rutile structure, resulting from
J. Mater. Chem. A
S–S bonding in the (001) plane.80 The most important difference
between the two phases is the way of connection of the FeS6
octahedra: octahedra in pyrite are connected to twelve neigh-
bours in a corner-sharingmanner, while in marcasite they share
corners with eight neighbours and edges with another two.
Pyrite is packed more tightly than marcasite.

Table 1 shows the collection of the equilibrium volumes of
the unit cell Vcell and bulk moduli B0 of both FeS2 polymorphs
predicted with different approaches. DFT within PBE, HSE06
and SCAN are able to predict the volumes of both phases in
good agreement with experimental values, while LDA and
PBEsol underestimate V0 signicantly by about 7(6)% and 5(4)%
for pyrite (marcasite), respectively. When Hubbard-U correction
is included in GGA, the equilibrium volumes increase slightly,
consistent with previous theoretical studies.17,18 On the other
hand, the ACFDT-RPA approach, irrespective of the density
functional approximation used to generate input KS orbital
wave functions and energies, predicts very accurate equilibrium
volumes for both FeS2 phases. The discrepancy between theory
and experiment is slightly bigger when the hybrid functional
HSE06 is used as the input, which could be related to the largely
overestimated band gap for FeS2 phases by HSE06.18,83,84 A
signicant improvement is also observed for the prediction of
the bulk moduli of both phases. The excellent performance of
the RPA approach to describe the equilibrium structural prop-
erties of FeS2 is consistent with previous studies of the RPA
approach to many sp semiconductors and transitionmetals.31–33

Table 1 also shows the collection of the total energy differ-
ence between pyrite and marcasite per formula unit, i.e. DEP–M,
from different approaches. Among local or semi-local density
functional approximations, LDA and PBEsol give the qualita-
tively correct prediction on the stability order, although the
values of DEP–M from them are dramatically underestimated
compared to the experimental enthalpy difference between
pyrite and marcasite. In contrast, PBE and SCAN lead to
a qualitatively wrong prediction regarding the relative stability
of the two phases. It is noteworthy that the SCAN functional, the
recently proposed meta-GGA that has performed remarkably
well for many diversely bonded systems,85 predicts a preference
of 31.7 meV per f.u. for marcasite to pyrite, and the discrepancy
from experiment is even larger than that of the PBE results. To
consider the possible roles played by the long-range van der
Waals (vdW) dispersion interactions in determining the FeS2
This journal is © The Royal Society of Chemistry 2018
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Table 1 The equilibrium volume of the unit cell Vcell, the bulkmodulus B0 for each polymorphic phase of FeS2, and the relative energyDEP–M (see
the text for definition) calculated with different approaches. The enthalpy difference DHP–M is calculated by adding zero-point energy (ZPE) to
DEP–M. Relative errors (%) of predicted Vcell and B0 with respect to the referenced experimental results are indicated in parentheses. The square
brackets indicate that the phonon correction calculated with PBE is used

Method

Vcell (Å
3) B0(GPa) DEP–M DHP–M

P M P M (meV per f.u) (meV per f.u)

LDA 148.19 (�6.7) 76.49 (�6.2) 195.6 (25.8) 184.2 (25.7) �7.3 �5.9
PBE 157.97 (�0.5) 81.52 (0.0) 157.0 (1.0) 149.3 (1.9) 27.9 29.5
PBEsol 151.10 (�4.9) 78.02 (�4.3) 182.7 (17.5) 172.5 (17.7) �4.5 �3.1
PBE + U 161.08 (1.4) 82.65 (�1.4) 140.0 (�10.0) 140.0 (�4.4) 28.3
PBEsol + U 152.98 (�3.7) 78.70 (�3.4) 169.3 (8.9) 169.0 (15.4) 4.4
HSE06 159.23 (0.3) 81.26 (�0.3) 133.8 (�14.0) 135.8 (�7.3) �5.2
PBE-D3 155.66 (�2.0) 80.31 (�1.5) 162.6 (4.6) 155.2 (5.9) 16.0
optB88-vdW 160.38 (1.0) 82.69 (1.4) 153.6 (�1.2) 145.8 (�0.5) 25.5
SCAN 159.28 (0.3) 81.49 (�0.0) 144.2 (7.3) 146.9 (0.3) 31.7
RPA@LDA 158.88 (0.0) 82.01 (0.6) 153.3 (�1.4) 149.4 (2.0) �30.7 �29.3
RPA@PBE 158.86 (0.0) 82.01 (0.6) 152.9 (�1.8) 149.2 (1.8) �24.0 �22.4
RPA@PBEsol 158.75 (�0.0) 81.98 (0.6) 153.3 (�1.4) 149.2 (1.8) �25.2 �23.8
RPA@PBE + U 158.00 (�0.5) 81.51 (0.0) 161.3 (3.7) 157.8 (7.7) �19.1 [�17.5]
RPA@HSE06 156.27 (�1.6) 80.21 (�1.6) 162.1 (4.2) 162.0 (10.6) �15.9 [�14.3]
Exp. 158.82a 81.51a 155.5 � 0.2b 146.5c �42.9 � 0.2d

a Ref. 20. b Ref. 81. c Ref. 82. d Ref. 9.

Fig. 2 Equation of state (EOS) curves of pyrite and marcasite calcu-
lated by using the PBEsol and RPA@PBEsol with the total energy of
marcasite at the equilibrium volume taken as the energy zero.
Experimental values are from ref. 9 and 20.
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phase stability, we consider two vdW-correction schemes in the
DFT framework, namely PBE-D3 and optB88-vdW. However, no
signicant improvement is observed with the vdW correction,
and the results are still qualitatively wrong. When the Hubbard-
U correction is considered, the correct stability order predicted
by PBEsol is even reversed, while it does not have a signicant
inuence on the results of PBE. A qualitatively correct predic-
tion can also be obtained by using the HSE06 hybrid functional,
which, however, still exhibits a considerable quantitative
discrepancy from experiment.

On the other hand, the ACFDT-RPA approach gives rather
satisfactory DEP–M results as shown in the lower part of Table 1.
The negative values of DEP–M predicted by ACFDT-RPA calcula-
tion clearly indicate that pyrite is more stable than marcasite,
and quantitatively agree well with experiment. For example,
RPA@PBE gives a DEP–M of �24.0 meV per f.u., in which an
exchange-correlation correction of 51.9 meV per f.u. reverses the
sign of DEP–M and corrects the stability order wrongly predicted
by PBE. A more illustrative view of the correction introduced by
using the RPA approach is provided in the BM-EOS obtained by
PBEsol and RPA@PBEsol as shown in Fig. 2. RPA@PBEsol
succeeds in reproducing experimental equilibrium volume and
predicts the energy preference for pyrite comparable to the
experimental value of DHP–M, in contrast to PBEsol which
underestimates both quantities signicantly. It should be noted
that although the values of DEP–M do depend on the DFA used
for the calculation of input KS wave functions, ACFDT-RPA
removes the uncertainty about DFAs in determining the rela-
tive stability order observed in the DFT calculations and
consistently stabilizes pyrite rather than marcasite. This merit
has been observed in the ACFDT-RPA calculations of the
anatase and rutile phases of TiO2.38

It is then important to gure out the origin of the good
performance of ACFDT-RPA total energy in predicting the right
This journal is © The Royal Society of Chemistry 2018
stability order of FeS2 polymorphs. The correction of the RPA
correlation energy term is found to be important for the deter-
mination of equilibrium volume and bulk moduli. Table 2
shows the list of the equilibrium volumes calculated by only
considering the EXX total energy evaluated with LDA, PBE and
PBEsol orbitals as input (denoted as EXX@X with the corre-
sponding DFA as X) and compares them with those from X and
RPA@X. In general, EXX@X gives equilibrium volume slightly
smaller than experimental values (except for EXX@PBE of
pyrite). It should be mentioned that from EXX@X calculations
with X being GGA + U and HSE06, neither pyrite nor marcasite
possesses an energy minimum within �10% around their
respective experimental volume and exhibits a tendency to
dissociate. The dissociating behaviour is remedied when the
RPA correlation energy is included. The RPA correlation energy
J. Mater. Chem. A
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Table 2 Equilibrium volume (Å3) of pyrite and marcasite calculated with different methods. Errors compared to experiment (%) are shown in
parentheses

DFA X

Pyrite Marcasite

X EXX@X RPA@X X EXX@X RPA@X

LDA 148.19 (�6.7) 154.3 (�2.8) 158.88 (0.0) 76.49 (�6.2) 77.0 (�5.5) 82.01 (0.6)
PBE 157.97 (�0.5) 159.1 (0.2) 158.86 (0.0) 81.52 (0.0) 78.6 (�3.6) 82.01 (0.6)
PBEsol 151.10 (�4.9) 156.2 (�1.6) 158.75 (�0.0) 78.02 (�4.3) 77.7 (�4.7) 81.98 (0.6)

Fig. 3 Relative energy calculated by different methods: DFT within
DFA X (X ¼ LDA, PBE and PBEsol), EXX@X and RPA@X.
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plays even a more crucial role in determining the relative energy
of FeS2 phases. As shown in Fig. 3, the relative energy DEP–M
calculated with EXX@X signicantly stabilizes marcasite over
pyrite by more than 140 meV per f.u. Including RPA correlation
energy is able to remedy the qualitatively false prediction.
Electronic structure analysis of the origin of RPA correlation

Based on the observations above, the question turns to pin-
pointing the physical origin of the RPA correlation stabilizing
pyrite over marcasite. In our previous study on the anatase and
rutile phases of TiO2,38 we pointed out that the crystal phase
(rutile) with the smaller gap would be more strongly stabilized
by ERPAc . This argument was implicitly derived from the math-
ematical expression of ERPAc , i.e. eqn (5) and (6), and supported
Fig. 4 Dependence of (a) RPA correlation energy, (b) band gap averag
volume of pyrite (black circle) and marcasite (red diamond), calculated b

J. Mater. Chem. A
by a correlation observed between the k-averaged band gap �Eg
and the RPA correlation energy ERPAc .38 �Eg is dened as38

Eg ¼ 1

Nk

XNk

i¼1

�
3cki � 3vki

�
(14)

where Nk is the number of k grids sampled in the rst BZ, and c
and v indicate the lowest conduction band and the highest
valence band, respectively. It would be interesting to check
whether a similar analysis can be used to understand the trends
in FeS2. Fig. 4(a) and (b) show the dependence of ERPAc and �Eg on
the unit cell volume for both FeS2 phases calculated with the
PBE XC functional. For the marcasite phase, a correlation
between ERPAc and �Eg can be clearly observed. For the pyrite
phase, however, while �Eg also decreases as the unit cell expands,
similar to that in marcasite, the value of ERPAc remains almost
constant, and therefore a direct correlation between �Eg and
ERPAc is missing. Obviously �Eg as a descriptor is over-simplied.
As is obvious from eqn (6), ERPAc depends not only on the
splitting between occupied and unoccupied states, which can
be characterized by �Eg, but also on the magnitude of the oscil-
lator strength. Therefore, we suspect that a more sophisticated
descriptor accounting for the band characteristics is required to
build a correlation between ERPAc and the band structure in the
present FeS2 case.

To validate the necessity of explicitly considering the char-
acteristics of wave functions in the band structure descriptor,
we rst analyze the differences in the electronic band structures
of pyrite and marcasite in more detail. The band structure as
well as the total and projected density of states near the Fermi
level calculated by using the PBE XC functional are shown in
Fig. 5. Both of the two phases have an indirect minimal band
ed over the Brillouin zone and (c) effective energy gap on the lattice
y PBE.

This journal is © The Royal Society of Chemistry 2018
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Fig. 5 Band structure and total and projected density of states of (a) pyrite and (b) marcasite at experimental volume, calculated by using the PBE
functional. The energy zero has been set to the top of the valence band, indicated by the blue dashed line.
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gap. The fundamental band gap of pyrite is predicted to be
smaller than that of marcasite, consistent with previous
studies.18,84 Both high-lying valence band states and low-lying
conduction band states are dominated by Fe-d states, but the
conduction band states have signicant S-p characters. In
particular, the projection of Kohn–Sham orbital wave functions
on the atomic orbitals reveals that in both phases the lowest
conduction state at the G point and also the conduction band
minimum (CBM) of pyrite are of S-p characters and are exclu-
sively composed of S–S anti-bonding orbitals s*p.

15 In contrast,
the CBM of marcasite at the T point consists of no S-p contri-
bution and features only Fe-d characters. In addition, the high-
lying valence band states in pyrite are separated from deeper
states by about 0.6 eV and show weaker dispersion compared to
those in marcasite, indicating the well localized occupied 3d
states (explicitly, dxy, dxz and dxz) of Fe.

From the analysis above, we can see that the direct excitation
from the high-lying valence bands to the low-lying conduction
bands features dominantly d–d type transitions, except for
those in the proximity of the G point. However, the d–d-type
transitions have small oscillator strengths due to the dipole
selection rule, and therefore contribute insignicantly to the
RPA correlation energy, which explains why �Eg, which is mainly
determined by the d–d transition features in FeS2, cannot be
correlated with the evolution of ERPAc . Nonetheless, it applies to
the anatase and rutile phases of TiO2 in our previous study38

where the charge transfer excitations from O-2p to Ti-3d states
are dominant. For FeS2, the dominant contributions to ERPAc can
be attributed to charge transfer-type transitions involving S-3p
and Fe-3d states, which can be characterized by generalizing
the k-averaged band gap to the following effective charge
transfer gap,

E
eff

g ¼ 1

Nk

XNk

i¼1

��ackiS-p

��2��avkiFe-d

��2
3cki � 3vki

 !�1

(15)

where |ankA-l|
2 is the square modulus of the projection of the

Bloch state jnk on the l-angular atomic orbitals of atom species
A. Fig. 4(c) shows the dependence of the effective band gap
This journal is © The Royal Society of Chemistry 2018
�Eeffg on the unit cell volume for pyrite and marcasite.
�Eeffg decreases by 0.4 eV (4%) and 5.7 eV (38%) when the volume
increases from �8% to +8% of the experimental value for pyrite
and marcasite, respectively. In contrast to �Eg, a remarkable
correlation between ERPAc and �Eeffg can be found in both phases
of FeS2. It is therefore conrmed that the stability of pyrite over
marcasite physically originates from the differences in the
characters of the electronic band structures of the two phases,
which can be described only in advanced (h-rung in Perdew's
Jacob's ladder metaphor86) exchange-correlation functionals
like RPA which depend on both occupied and unoccupied
states.

To understand why the effective band gap evolves differently
as a function of unit cell volume in the two FeS2 phases, we
scrutinize along a selected k-path in the Brillouin zone the
variation of energies of states near the Fermi level as the unit
cell volume changes, as shown in Fig. 6. When the volume
increases from �8% to +8% of the experimental value (corre-
spondingly band structures from black lines to red lines), the
direct band gaps decrease in both phases with the exception of
the region near the G point in pyrite. For marcasite, the nar-
rowed effective band gap with increasing volume can be illus-
trated by the global decreasing of the direct band gap along the
selected k grids. The situations are more complicated for the
pyrite phase. At a small volume, the direct gap at the G point is
much smaller than those at other k points and close to the
fundamental gap due to the atness of the highest valence
band. With a larger volume, the gap increases near the G point,
but decreases at other k points. Moreover, since the conduction
band states are dominantly of Fe-d characters, but those near
the G point are almost of S-p characters, the terms involving
transitions around the G point in the summation of eqn (15)
contribute considerably to the inverse of �Eeffg . As a result, the
reduction in these terms cancels the enlargement in the other
terms to a great extent as the volume increases, and the effective
band gap for pyrite is almost constant as the volume varies, in
strong contrast to the situations in marcasite. We note that the
unique geometrical dependence of the energy levels of
conduction band states near G on the x parameter (equivalent to
J. Mater. Chem. A
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Fig. 6 Electronic band structure near the Fermi level of (a) pyrite and (b) marcasite, calculated by using the PBE functional. The black solid (red
dotted) lines indicate the band dispersions of the optimized structure with 92% (108%) experimental volume. The experimental volumes are from
ref. 20. The valence band maximum is aligned as the energy zero, marked by the blue dashed line.

Fig. 7 Phonon density of states of pyrite and marcasite calculated by
PBEsol.
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the S–S bond length) for pyrite has been elucidated by Eyert
et al.15 and more recently by Kolb and Kolpak.87 It is observed
that both the S–S bond and the distance between S2 dumbbells
are lengthened when the crystal volume increases. The elon-
gated S2 dumbbell results in reduced hybridization between
sulfur p orbitals, and subsequently a smaller sp � s*p splitting
and downshi of the CBM. On the other hand, the hopping
between neighbouring S2 dumbbells is suppressed when they
become more separated, leading to a weakened dispersion of S2
s*p bands and hence an upshi of the CBM. The ultimately lied
CBM is likely to be the outcome of the competition of these two
contributions.

To summarize the analysis we have made, we nd that the
correlation between the RPA correlation energy and the band
structure can be built upon the ‘‘effective band gap’’ descriptor
concerning the direct band gap and the atomic projection of
valence and conduction Bloch states. The more negative
ERPAc , which leads to the stability of pyrite over marcasite at their
corresponding experimental volume, can be attributed to the
low-energy excitation from Fe-d to S–S s*p bands based on the
investigation of the geometrical dependence of the electronic
band structures of the two FeS2 phases.
Fig. 8 Calculated and experimental enthalpy of transformation from
marcasite to pyrite for a range of temperature. The experimental data
are taken from ref. 9.
Phonon contribution to the relative stability

We further investigate the contribution from lattice vibrations
to the energy difference between the FeS2 polymorphs. In Table
1, we have included into DEP–M the ZPE correction calculated by
the corresponding DFA to get the enthalpy difference DHP–M, i.e.
the enthalpy of transformation from marcasite to pyrite. The
ZPE correction is 1.36, 1.58 and 1.44meV per f.u. from LDA, PBE
and PBEsol calculations, respectively, stabilizing marcasite
regardless of the chosen functional. This agrees with the nding
in a previous theoretical study.17 The phonon density of states of
each phase calculated by using PBEsol is shown in Fig. 7.
Similar distribution is observed for LDA and PBE phonon
calculations. Although the density distribution is similar for
both phases, which illustrates the small energy difference in
ZPE, the peak with the largest phonon energy at 450 cm�1 is
J. Mater. Chem. A
observed for pyrite, and a weaker peak near 430 cm�1 for
marcasite. This offers an explanation for the larger ZPE of
pyrite. Since calculations with traditional functionals underes-
timate the measured thermodynamic stability of pyrite, the ZPE
correction worsens the discrepancy from experiment. This
This journal is © The Royal Society of Chemistry 2018
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situation is the same for RPA calculations, but the ZPE differ-
ence is small such that it brings a negligible correction and
DHP–M is almost identical to DEP–M.

We calculate the phonon energy difference for a range of
temperature and add it to DEP–M as a correction to obtain the
temperature dependence of DHP–M. For comparison, the
enthalpy of transformation from marcasite to pyrite DHP–M

measured by experiment decreases by 0.2 meV per f.u. from 0 K
to 700 K.9 In our theoretical prediction, as shown in Fig. 8, the
same trend but a bigger change of 1.2 meV per f.u. is observed.
It might be due to the neglect of anharmonicity in the harmonic
approximation made in the phonon calculation.

4 Concluding remarks

In the present work, we have reported a systematic theoretical
study on the relative stability between the pyrite and marcasite
phases of FeS2. We have reproduced the controversy found in
the literature in predicting the stability order of pyrite and
marcasite with different density functional approximations. We
found that this issue cannot be solved by using the newly
developed accurate SCAN meta-GGA, nor by considering the
long-range van der Waals (vdW) interaction included in the
PBE-D3 method or optB88-vdW functional. On the other hand,
we found that the non-self-consistent ACFDT-RPA calculation is
able to predict the correct stability order and stabilizes pyrite
over marcasite, regardless of the density functional approxi-
mation used to generate the input wave functions. To bring
insight from the observation, we have presented a detailed
analysis on the physical origin for the success of the RPA total
energy. The correlation between the RPA correlation energy and
the effective charge transfer band gap suggests that not only the
band gap, but also the characteristics of the Kohn–Sham states
near the Fermi level have signicant inuences on the magni-
tude of the correlation energy and consequently the relative
energy between the two polymorphs. This indicates that it is
essential to account for the distinction in the band structure to
address the relative stability of the FeS2 polymorphs which are
energetically close to each other. Accurate equilibrium volumes
and bulk moduli of both FeS2 phases have also been well
reproduced by the RPA approach. Based on phonon spectra
calculated by the nite-difference approach, we have also
considered the contributions of the zero-point energy and nite
temperature vibration excitations, which are found to be
negligible to the relative stability of pyrite and marcasite.

We note that the predicted DHP–M from the RPA total energy
still shows noticeable quantitative discrepancy with experiment
and is less than the experimentally measured value by about 20
meV per f.u. In recent years, there have been intensive efforts to
develop new ACFDT-based methods88–95 that go beyond the one-
shot RPA approach as used in this work (see ref. 29 for a review
of the latest developments). It would be highly interesting to
investigate whether those new developments can further improve
the quantitative agreement with experiment regarding the phase
stability of the systems like TiO2 and FeS2. The latter can be used
as a stringent test-bed to characterize the performance of newly
developed advanced exchange-correlation functionals.
This journal is © The Royal Society of Chemistry 2018
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