I. INTRODUCTION

The anomalous behavior of water has been noticed for at least more than 350 years [1] and, at present, more than 70 anomalies have been identified [2]. For example, upon cooling at low pressures (approximately \(P < 200 \) MPa) water exhibits an anomalous increase in thermodynamic response functions, such as isobaric heat capacity \(C_P(T) \) and isothermal compressibility \(\kappa_T(T) \), and a density maximum at \(\approx 277 \) K. In the 1970s, Angell [3–5] and collaborators performed a series of studies showing that water anomalies became more pronounced in the supercooled liquid state of water (metastable liquid water at \(T < 273 \) K) and at \(0 < P < 200 \) MPa. In these remarkable experiments, Angell et al. showed that thermodynamic response functions such as \(\kappa_T(T) \) and \(C_P(T) \) seemed to diverge at \(T \approx 228 \) K [3,6]. A few scenarios have been proposed to explain water’s anomalous behavior in the liquid state; excellent reviews are available (e.g., Refs. [7–9]). These scenarios include (i) the stability-limit conjecture [10], (ii) the liquid-liquid critical point (LLCP) scenario [11], (iii) the critical-point-free scenario [12], and (iv) the singularity-free scenario [13]. Scenarios (i) and (iii) predict a divergence in \(\kappa_T(T) \) and \(C_P(T) \) upon isobaric cooling at low pressures, while in the case of scenarios (ii) and (iv), \(\kappa_T(T) \) and \(C_P(T) \) exhibit a maximum [14,15]. Recent experiments [16–18] indicate that upon isobaric cooling, \(\kappa_T(T) \) does not diverge but exhibits a maximum, implying that scenarios (i) and (iii) are not valid. We note that water is also anomalous in the glass state (see, e.g., Refs. [8,19–22]), existing in two amorphous solid states at approximately \(P < 0.8 \) MPa. Moreover, the two glassy states of water can be interconverted by, e.g., isothermal compression, via an apparent first-order-like phase transition. In this regard, it is important to keep in mind that only the LLCP scenario can satisfactorily explain the
sharpeness of such a glass-glass first-order-like phase transition [22]. In addition, the LLCP scenario provides a natural framework to understand the anomalous behavior of binary aqueous solutions [23]. We also note that the LLCP scenario is strongly supported by computer simulations of many classical water models where a LLCP is found at low temperatures [9,24–30].

The LLCP scenario has also been proposed to explain the behavior of other substances, including hydrogen [31–38], silicon [39–44], and gallium [45,46]. In the case of water and hydrogen, quantum effects are relevant in the proximity of the observable [48,49]. In particular, as shown in Ref. [16], the potential in Fig. 1. We also include a Lennard-Jones potential FJ liquid [53]) also exhibits maxima in the isobaric heat capacity CP(T) upon isobaric cooling. This is because the slope of the LLPT line dP/dTLLPT of the mFJ is positive, while in the FJ model, dP/dTLLPT ≈ 0. It has been shown that when dP/dTLLPT = 0, there is no maxima in CP(T) above the LLCP [63,64]. In the case of water models that exhibit a LLCP, CP(T) exhibits a maximum in the supercritical region of the P-T plane. It is for this reason that in this work we consider the mFJ model as opposite to the FJ model. We note, however, that in the computer simulations of water models that exhibit a LLPT line, dP/dTLLPT < 0, i.e., opposite to the case of the mFJ liquid.

Our computational techniques are identical to those employed in Ref. [65], where we focused on the FJ model and the nuclear quantum effects on the corresponding LLCP (the thermodynamic response functions in the supercritical region were not explored). Accordingly, we refer the reader to Ref. [65] for details. Briefly, PIMC simulations are performed at constant (N, V, T) for a system of N = 1000 particles, each composed of n = 10 beads. Following Ref. [65], we consider the modified Fermi-Jagla pair-interaction potential

\[
U(r) = \epsilon_0 \left[\frac{A_0}{r^n} + \frac{A_0}{1 + \exp \left(\frac{A_0}{\hbar^2} (r-a-A_2) \right)} - \frac{B_0}{1 + \exp \left(\frac{B_0}{\hbar^2} (r-a-B_2) \right)} \right]
\]

but with the set of parameters given in Table I. The modified Fermi-Jagla (mFJ) potential is compared to the original FJ potential in Fig. 1. We also include a Lennard-Jones potential parametrized so its minimum coincides with the minimum of the FJ potential. As for the FJ potential, the mFJ model is a core-softened potential characterized by a hard-core radius \(r = a \) and an attractive minimum at \(r \approx 1.7a \). Moreover, both model liquids exhibit many of water’s anomalous properties [8,9,18], including the increase in compressibility and the development of a density maximum upon isobaric cooling. In particular, both model liquids also exhibit a LLPT and LLCP, consistent with simulations of several full-atomistic water models [11,28,54–62]. However, the mFJ liquid (but not the FJ liquid [53]) also exhibits maxima in the isobaric heat capacity CP(T) upon isobaric cooling. This is because the slope of the LLPT line dP/dTLLPT of the mFJ is positive, while in the FJ model, dP/dTLLPT ≈ 0. It has been shown that when dP/dTLLPT = 0, there is no maxima in CP(T) above the LLCP [63,64]. In the case of water models that exhibit a LLCP, CP(T) exhibits a maximum in the supercritical region of the P-T plane. It is for this reason that in this work we consider the mFJ model as opposite to the FJ model. We note, however, that in the computer simulations of water models that exhibit a LLPT line, dP/dTLLPT < 0, i.e., opposite to the case of the mFJ liquid.

Our computational techniques are identical to those employed in Ref. [65], where we focused on the FJ model and the nuclear quantum effects on the corresponding LLCP (the thermodynamic response functions in the supercritical region were not explored). Accordingly, we refer the reader to Ref. [65] for details. Briefly, PIMC simulations are performed at constant (N, V, T) for a system of N = 1000 particles, each composed of n = 10 beads. Following Ref. [65], we consider the modified Fermi-Jagla pair-interaction potential compared to the original FJ and Lennard-Jones pair potentials (with same minimum depth and location). The original and modified FJ potentials are characterized by a hard-core radius \(r = a \), a core-softened part at approximately \(a \leq r \leq 1.7a \), and a weak attractive part.

<table>
<thead>
<tr>
<th>n</th>
<th>A0</th>
<th>A1</th>
<th>A2</th>
<th>B0</th>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>4.56</td>
<td>57.76</td>
<td>1.36</td>
<td>1.00</td>
<td>3.57</td>
<td>2.465</td>
</tr>
</tbody>
</table>

FIG. 1. Modified FJ pair-interaction potential compared to the original FJ and Lennard-Jones pair potentials (with same minimum depth and location). The original and modified FJ potentials are characterized by a hard-core radius \(r = a \), a core-softened part at approximately \(a \leq r \leq 1.7a \), and a weak attractive part.
a family of mFJ liquids by considering different values of the Planck’s constant, \(h \). Specifically, we perform simulations for the classical mFJ liquid, corresponding to \(h = 0 \), as well as three quantum versions of the mFJ liquid corresponding to \(h = h_1 = 0.2474, h_2 = 0.515, \) and \(h_3 = 0.7948 \) (these values of \(h \) are not negligible and are relevant in the context of real substances such as hydrogen and water which have been suggested to exhibit a LLCP). It follows that the mFJ liquids are more quantum with increasing \(h \). At a given \((N, V, T)\), PIMC simulations are performed for \(10^5 \) Monte Carlo (MC) steps during equilibration. This is followed by additional \(10^3 \times 3 \times 10^5 \) MC steps, depending on the working conditions. For data analysis, we only considered state points for which the mean-square displacement of the ring-polymer centroids is larger than twice the mFJ hard-core radius \(a \). In one MC step, we first move all the 10,000 beads of the system and then the centroids of all \(N \) ring-polymers are displaced. We use reduced units where the particle mass is \(m = 1 \) and the Boltzmann constant \(k_B = 1 \); the energy and distance units are given by the mFJ potential parameters \(\epsilon_0 \) and \(a \), respectively. It follows that the units of \(h \) are \(a(\epsilon_0 m)^{1/2} \) [66].

We note that our work addresses the effects of quantum mechanics on a given classical model (i.e., by tuning the Planck’s constant from \(h = 0 \) to \(h > 0 \)). Accordingly, the underlying interaction potential between particles (mFJ pair potential) is not altered as the liquid becomes more quantumlike. In a real liquid, increasing \(h \) could also lead to additional changes in the effective interacting potential. Hence, in the context of this work, these additional effects should be considered to be negligible or secondary. Such effects may include changes at the electron distribution level in the atoms/molecules of the system and/or changes in the “geometry” of the molecules considered. At present, it is unclear how relevant such effects may be and how much they depend on the system studied. The evaluation of the quantum effects on the underlying interacting potential considered falls beyond the scope of this work and requires theoretical and computational techniques other than PIMC simulations.

From the PIMC simulations we extract the thermodynamic properties of the ring-polymer system, such as the \(P(v) \) isotherms, from which \(\kappa_T \) can be obtained. The case of \(C_p \) is subtle. From the PIMC simulations we obtain the heat capacity of the ring-polymer system \(C_p(T)_{BP} = \left(\partial H/\partial T \right)_p \). The heat capacity of the corresponding quantum liquid is given by \(C_p(T) = C_p(T)_{BP} + \Delta C_p \), where \(\Delta C_p \) is given by \(\Delta C_p = -2 \left(\partial U_{BP}/\partial T \right)_p \). Here, \(U_{BP}(N, V, T) \) is the potential energy of the ring-polymers’ springs at the given working conditions \((N, V, T)\); see, e.g., Ref. [67] for details.

III. Results

For a given value of \(h \), we perform PIMC simulations for volumes \(v = V/N \) expanding within the range \(1.0 < v < 3.2 \) and at temperatures \(T = 0.10, 0.15, 0.20 \ldots 0.95 \). From the PIMC simulations data, we construct the corresponding \(P(v) \) isotherms. As an example, we include in Fig. 2(a) all the \(P(v) \) isotherms obtained for \(h = h_2 \). As shown in the Supplementary Material [68], similar results are obtained at all the values of \(h \) studied. The main point of Fig. 2(a) is the development of van der Waals loops in the \(P(v) \) isotherms upon cooling, which indicates the existence of a LLPT and associated LLCP at low temperature. The corresponding \(P-T \) phase diagram (\(h = h_2 \)) showing the LLCP and LLPT line is shown in Fig. 2(b). \(P(v) \) isotherms similar to those shown in Fig. 2(a) and a \(P-T \) phase diagram analogous to Fig. 2(b) were also found for the classical and quantum FJ liquids in Refs. [53,65]. Accordingly, we refer the reader to these works for a detailed discussion of the phenomenology associated to the LLPT and LLCP. As shown in Refs. [53,65], the two liquids at \(T < T_c \) differ in their local structure (and hence, in thermodynamic properties). As shown in Fig. 3, in the high-density liquid (HDL) the nearest neighbors of a given
atom are at a distance $r_{nn} \approx a$, while in the low-density liquid (LDL) $r_{nn} \approx 1.7a$, which corresponds approximately to the minimum of the mFJ pair potential (Fig. 1).

The LLCP temperature T_c for the different quantum mFJ liquids is shown in Fig. 4(a). As for the original FJ liquids, the LLCP of the mFJ liquids moves towards lower temperatures as the liquid becomes more quantum (i.e., as h increases). In addition, we find the same nuclear effects on critical pressure and critical volume of the FJ and mFJ. As shown in Figs. 4(b) and 4(c), P_c increases while V_c remains constant as h increases.

We note that our results indicate that the nuclear quantum effects on critical pressure and critical volume are sensitive to h. We note that our results indicate that the nuclear quantum effects on critical pressure and critical volume are sensitive to h.

Interestingly, the slope of the LLPT line can be affected by the nuclear quantum effects. As shown in Fig. 4(d), the slope of the LLPT line, dP/dT_{LLPT}, decreases with increasing h. The Clausius-Clapeyron relationship [69] states that $dP/dT_{LLPT} = \Delta S/\Delta V$, where $\Delta S = S_{HDL} - S_{LDL}$ is the difference in entropy of HDL and LDL and $\Delta V = V_{HDL} - V_{LDL}$ is the corresponding difference in volume. Hence, it follows from Fig. 4(d) that as the liquid becomes more quantum, the ratio $\Delta S/\Delta V$ decreases. For all values of h studied, we find that $-1.0 < \Delta V < -0.1$, depending on the specific values of $T < T_c$ and h. It follows that since $\Delta V < 0$ and $dP/dT_{LLPT} > 0$ for all h, we also have $\Delta S < 0$. Hence, HDL is always more ordered (lower entropy) than LDL [15]. Interestingly, we find that the entropy difference between HDL and LDL becomes less pronounced as the liquid becomes more quantum (i.e., $|\Delta S|$ decreases with increasing h).

Next we discuss how the lines of maxima density ρ, isobaric heat capacity C_p, and isothermal compressibility κ_T change location in the $P-T$ plane as the mFJ liquid evolves from classical ($h = 0$) to quantum ($h > 0$). The results are summarized in Fig. 5. Figure 5(a) shows that the C_p-maxima line shifts towards lower temperatures and higher pressures as h increases, consistent with the corresponding shift in the location of the LLCP. Similarly, increasing h shifts the κ_T-maxima lines towards lower temperatures and higher pressures; see Fig. 5(b). The effect of increasing h on the ρ-maxima line is shown in Fig. 5(c). Surprisingly, the shift in the ρ-maxima line is different from the shift in the location of the LLCP. Specifically, as the liquid becomes more quantum, the LLCP shifts towards lower temperatures and larger pressures, while the ρ-maximum line extends towards higher temperatures and covers a wider range of pressures. This means that, for example, in the case of D$_2$O and H$_2$O, the relative difference in pressure and temperature of the corresponding ρ-maxima lines should not be used to estimate the relative location of the corresponding LLCPs.

It follows from Figs. 5(a) and 5(c) that nuclear quantum effects not only shift the location of the ρ- and C_p-maxima lines but can also change their shape. This implies that the ρ- and C_p-maxima lines among isotopes, e.g., between H$_2$O and D$_2$O, cannot be used to predict the relative location of the corresponding LLCPs. The case of the κ_T-maxima lines is more subtle. The lower κ_T-maxima line in Fig. 5(b) is sensitive to h while the upper κ_T-maxima line is not. Computer simulations of water models show only one κ_T maxima, and...
this line joins the \(C_P \)-maxima line in the proximity of the LLCP, defining the so-called Widom line (see, e.g., Ref. [9]). In other words, the \(\kappa_T \)-maxima line relevant to the case of water (and experiments) corresponds to the upper \(\kappa_T \)-maxima line in Fig. 5(b). In the case of the mFJ liquids, quantum nuclear effects shift this \(\kappa_T \)-maxima line in the \(P-T \) plane but do not affect its shape. If this is also the case of water, then one could indeed determine the relative locations of the LLCP of H\(_2\)O and D\(_2\)O by experimentally measuring the relative shift in pressure and temperature of the corresponding \(\kappa_T \)-maxima line. At present, the \(\kappa_T \)-maxima line for H\(_2\)O and D\(_2\)O has been measured at \(P = 0.1 \) MPa, with maxima observed at 229 and 233 K, respectively [16]. This shift in temperature is not inconsistent with the estimated LLCP temperatures of H\(_2\)O and D\(_2\)O, respectively, \(T_c \approx 220–223 \) K (\(P_c \approx 50–100 \) MPa) [22,70], and \(T_c = 230 \pm 5 \) K (\(P_c \approx 50 \pm 20 \) MPa) [51].

IV. SUMMARY AND DISCUSSION

We performed PIMC simulations of the mFJ liquid over a wide range of volumes and temperatures using different values of Planck’s constant. The mFJ model is a waterlike, monatomic model liquid that exhibits a LLPT and LLCP, as well as lines of maxima in \(\kappa_T, \ P, \) and \(\rho \) in the supercritical region of the \(P-T \) plane. The same anomalous properties are predicted by different classical water models.

We find that adding nuclear quantum effects to the classical mFJ liquid shifts the location of the LLPT and LLCP towards higher pressures and lower temperatures. Similar effects were found in the case of the original FJ liquid [65]. The FJ and mFJ liquids have LLPT lines in the \(P-T \) plane with different slopes. In the FJ liquid, \(dP_{LLPT}/dT \approx 0 \), while \(dP_{LLPT}/dT > 0 \) in the case of the mFJ liquid. This suggests that the reported nuclear quantum effects on the LLCP/LLPT are rather general, independent of \(dP_{LLPT}/dT \). This is important since, in the case of water, computer simulations indicate that \(dP_{LLPT}/dT < 0 \).

We also find that the nuclear quantum effects shift the location of the \(\kappa_T \) and \(C_P \)-maxima lines towards higher pressures and lower temperatures. It follows that these maxima lines can be used to estimate the nuclear quantum effects on the LLCP/LLPT. Indeed, experiments in H\(_2\)O and D\(_2\)O show that the maximum in \(\kappa_T \) at \(P = 1 \) bar shift by \(-4 \) K in H\(_2\)O relative to D\(_2\)O [16], i.e., as nuclear quantum effects become more pronounced. This shift in temperature is also consistent with the estimated location of the LLCP in H\(_2\)O (\(T_c \approx 220 – 223 \) K) and D\(_2\)O (\(\approx 230 \pm 5 \) K) [50,51]. Instead, we find that the nuclear quantum effects on the \(\rho \)-maxima line are different to those observed on the LLCP/LLPT. Specifically, the \(\rho \)-maxima line shifts towards higher temperatures and covers a wider pressure range as the mFJ becomes more quantum. It follows that the nuclear quantum effect on the LLCP/LLPT should not be estimated by the corresponding effect on the \(\rho \) line.

Our results may be important for experiments in water and hydrogen searching for evidence of a LLCP/LLPT. In both cases, computer simulations predict the existence of a LLCP/LLPT. However, accessing the LLCP/LLPT has been challenging in experiments. In the case of water, crystallization occurs rapidly in the proximity of the hypothesized LLCP. In the case of hydrogen, the LLCP is predicted to exist at very

FIG. 5. Lines of maxima in (a) isobaric heat capacity \(C_P \), (b) isothermal compressibility \(\kappa_T \), and (c) density \(\rho \) of the quantum mFJ liquids for different values of the Planck’s constant \(h \). The insets show the quantities in the main panels shifted in pressure and temperature relative to the LLCP values. As the liquid becomes more quantum (i.e., \(h \) increases), the \(C_P \)- and \(\kappa_T \)-maxima lines shift towards lower temperatures and higher pressures, as for the case of the LLCP. This is not the case for the \(\rho \)-maxima line.
high pressures and temperatures. In both cases, supercritical lines in thermodynamic response functions are predicted by computer simulations, and these maxima lines are easier to access experimentally than the LLCP itself. In this regard, our results provide an additional test of the LLCP hypothesis in experiments. The present PIMC simulations suggest how isotope substitution should shift the supercritical lines (and LLCP/LLPT).

ACKNOWLEDGMENTS

Y.L. and L.X. acknowledge the National Natural Science Foundation of China (Grants No. 11525520 and No. 11935002), the National Basic Research Program of China (973 Program, Grant No. 2015CB856801), and the National Key Research and Development Program of China (Grant No. 2016YFA0300901). We were grateful for the computational resources provided by the TianHe-1A and the High-performance Computing Platform of Peking University. This work was also supported, in part, by a grant of computer time from the City University of New York High Performance Computing Center under NSF Grants No. CNS-0855217, No. CNS-0958379, and No. ALI-1126113. G.E.L. acknowledges support from the NSF CREST Center for Interface Design and Engineered Assembly of Low Dimensional systems (IDEALS), NSF Grant No. HRD-1547830.

[66] The units of h in Ref. [65] are incorrect. In that work, it is concluded that the resulting units of h are $\alpha(e_0)^{1/2}$.