p-shell hypernuclear energy spectra using the Gogny-interaction shell model

To cite this article: X Y Chen et al 2019 J. Phys. G: Nucl. Part. Phys. 46 125106

View the article online for updates and enhancements.
Abstract

Recent high-resolution experiments at JLab give the energy spectra of the hypernuclei ^7He, ^9Li, ^{10}Be and ^{12}B. However, their spins and parities of the excited states have not been known experimentally. In the present paper, we make a systematic theoretical investigation for the p-shell hypernuclei, within the shell model based on the nucleon–nucleon (NN) and hyperon–nucleon interactions. The effective NN interaction takes the finite-range density-dependent Gogny force, and the hyperon–nucleon interaction takes an empirical ΛN interaction which includes the ΛN–ΣN and ΣN–ΣN coupling effects. The shell model with the Gogny force without parameters being refitted can reasonably describe both spectra and binding energies of the p-shell nuclei, which gives a confidence for the further calculations of hypernuclei. We compare our results with experimental data as well as various theoretical calculations, and explain the recent experimental hypernuclear spectra observed at JLab.

Keywords: Λ hypernuclei, energy spectra, Gogny force, ΛN–ΣN coupling, shell model

(Some figures may appear in colour only in the online journal)
With effective Λ-nucleon interactions, hypernuclei have been well described using nuclear models such as shell model [6-8], mean-field models [9-14] and beyond-mean-field approaches based on nuclear energy density functionals [15-17]. The pioneering calculations of the shell model by Gal et al [6, 18, 19] have successfully explained the γ-ray transitions observed in the p-shell Λ hypernuclei [20, 21] and the Λ production cross-sections of the (K⁺, π⁻) and (π⁺, K⁻) reactions [22, 23]. The effective ΛN interaction used in the calculation is based on the Nijmegen potential, and its validity has been well tested in shell-model [21, 24] and cluster-model calculations [25-27]. More precise calculations need to include the ΛN–ΣN coupling effect which was first suggested by Akaishi and his collaborators [28, 29] and later tested by ab initio calculations using the Nijmegen NSC97 potential [30-32]. Shell-model calculations with the inclusion of the ΛN–ΣN coupling have been performed by Millener [7, 8] in order to interpret the γ-ray data of the N ≈ Z p-shell Λ hypernuclei [33]. The effective ΛN interaction has also been used to investigate the properties of neutron-rich hypernuclei [34-36], ΛΛ hypernuclei [37] and charge symmetry breaking in Λ hypernuclei [38, 39]. Recently, the advanced hypernuclear no-core–shell model based on chiral effective field theory has been developed and applied to the Λ ≲ 7 Λ hyperhelium isotopes [40].

The empirical Cohen–Kurath (CK) nucleon–nucleon (NN) interaction [41] which was obtained by fitting experimental spectra of nuclei has been widely used in the shell-model calculations of the p-shell nuclei. While the interaction has successfully explained the data of N ≈ Z Λ hypernuclei, calculations for some neutron-rich hypernuclei, such as 7He, deviates from experimental data.

In the calculations of shell-model two-body matrix elements (TBMEs), phenomenological potentials have also been used. Delta-type phenomenological interactions, such as surface delta interaction and Skyrme force, have been adopted in shell-model calculations [42, 43]. In the present work, we use the finite-range density-dependent Gogny force to calculate TBMEs and single-particle energies (SPEs). We use the existing Gogny D1S parameters [44] without refitting. The parameters were determined with mean-field calculations (e.g. Hartree–Fock–Bogoliubov) [45, 46], giving the good descriptions of the bulk properties of nuclei, such as binding energies, charge radii and saturation densities. Previous shell-model calculations based on the Gogny force have successfully explained both binding energies and spectra of the p-shell and sd-shell nuclei [47], taking the advantage of the density dependence of the Gogny interaction. The present calculations combine the Gogny force and the effective ΛN interaction to investigate the p-shell hypernuclei. The results are compared with other calculations and the recent experiments performed at JLab.

2. The framework

In the present shell-model calculations of the p-shell hypernuclei, 4He is chosen as the frozen core. The Λ or Σ hyperon is assumed to be in the lowest 0s1/2 orbit, while (A – 5) valence nucleons move in the 0p shell. The shell-model TBMEs are calculated using the Gogny force [44] and the ΛN interaction [7, 19, 48]. The effective Hamiltonian is given by [7, 35, 48]

\[H = H_0 + V_{NN} + V_{YN}, \]

where \(H_0 = \sum_c c_a \hat{n}_a \) is the one-body part of the Hamiltonian in the valence space, with \(c_a \) and \(\hat{n}_a \) being the energy and particle-number operator for the single-particle orbit \(a \), respectively. The Λ hyperon is on the 0s1/2 orbit, and contributes to \(H_0 \) with a constant single-particle energy, thus does not affect the excitation energy spectrum of the hypernucleus. \(V_{NN} \) and \(V_{YN} \) are the NN and hyperon–nucleon interactions, respectively. The hyperon–nucleon interaction
includes the direct ΛN and ΣN interactions, and the ΛN–ΣN and ΣN–ΣN coupling effects [7, 35, 48]. In the presences of the ΛN–ΣN and ΣN–ΣN couplings, the Σ hyperon is included in the model space as the excitation state of the Λ hyperon. The mass difference between Σ and Λ hyperons, i.e. the excitation energy of Λ, is taken as 80 MeV [7, 35, 48].

2.1. The Gogny NN interaction

The NN interaction can be written as sum of two-body operators [49]

$$V_{NN} = \sum_{a\leq b \leq c \leq d} \sum_{J_T} V_{JT}(ab; cd) \hat{T}_{JT}(ab; cd),$$

with

$$\hat{T}_{JT}(ab; cd) = \sum_{J_T} A_{J_T}^J (ab) A_{J_T}^T (cd),$$

where $\hat{T}_{JT}(ab; cd)$ is the two-body density operator for the nucleon pair in orbits (a, b) and (c, d) with the coupled angular momentum J and isospin T. $A_{J_T}^J$ or $A_{J_T}^T$ is the creation or annihilation of the nucleon pair. $V_{JT}(ab; cd) = \langle a, b | V_{NN, \text{Gogny}} | c, d \rangle$ is the antisymmetrized TBME for the NN interaction. As mentioned already, in the present work, we use the finite-range Gogny force [44]

$$V_{NN, \text{Gogny}} = \sum_{i=1}^{3} e^{-i\rho_i - r_i^2/\rho_i^2} \left(W_i + B_i P^* - H_i P - M_i P^* P^* \right) + t_i \delta(r_1 - r_2) \left(x_0 + 1 + x_0 P^* \right) \left[\rho \left(\frac{r_1 + r_2}{2} \right) \right]^{\rho} + iW_0 \delta(r_1 - r_2) (\sigma_1 + \sigma_2) \cdot k' \times k,$$

to evaluate TBMEs. The Gogny force is density dependent. It has been known that the density dependence which originates from the three-body force plays a crucial role in the calculations of nuclear structure and nuclear matter. In [50], it has been shown that the density dependence is also important for the calculations of nuclear excitation spectra. In our calculations, the density is determined self-consistently by the numerical iteration with the diagonalizing of the shell-model Hamiltonian which is density dependent as well, see [50] for the detailed explanations of the density iteration and NN TBME calculations with the Gogny force. The set of most popular parameters D1S [44] is used.

In [47, 50], the feasibility to use the Gogny interaction for the effective shell-model NN interaction has been well tested by comparing the TBMEs with those by other effective interactions. Comparisons show good similarity between the TBMEs obtained by the Gogny D1S [44] and by other empirical or realistic interactions in both p shell and sd shell [47].

2.2. The hyperon–nucleon interaction

The hyperon–nucleon interaction takes the form as [7, 19, 48]

$$V_{YN} = \bar{V} + \Delta s_y \cdot s_y + S_y I_N \cdot (s_y + s_y) + S_y I_N \cdot (-s_y + s_y) + TS_{12},$$

where Y represents the hyperon (Λ or Σ). \bar{V}, Δ, S_y, and T are radial integrals which are parameterized [7, 19, 48]. Using equation (5), the ΛN–ΣN and ΣN–ΣN couplings can be obtained with different parameter values of the radial integrals [7, 19, 35, 48]. s_y and s_y are spin operators for the nucleon and hyperon, respectively. I_N is the angular momentum operator for the nucleon. The tensor operator S_{12} is defined by
with $\sigma = 2s$, and $\hat{r} = (r_N - r_\Lambda)/|r_N - r_\Lambda|$ is the unit vector of the nucleon–hyperon relative coordinate. We adopt the radial integral parameters determined in [7, 8, 34].

3. Calculations of p-shell hypernuclei

As a test how well the shell model based on the Gogny force works, we have calculated the ground-state energies of $A \leq 9$ helium, lithium and beryllium isotopes with the 4He core, shown in figure 1. We see that the calculations are in good agreement with experimental data. In the calculation, for each nucleus, the length parameter $\hbar \omega$ of the harmonic-oscillator (HO) basis takes the value given by minimizing the energy of the nucleus without the Λ hyperon. In [47], we discussed the $\hbar \omega$ choice. The $\hbar \omega$ value determined thus is close to the empirical value of $\hbar \omega = 45A^{-1/3} - 25A^{-2/3}$ [51]. We have tested that the spectra calculation is not sensitive to the $\hbar \omega$ choice in the range near the minimizing $\hbar \omega$ value. For example, in the 6He case, the energy minimization gives $\hbar \omega = 15.6$ MeV, against the empirical $\hbar \omega = 17.2$ MeV. If we change the $\hbar \omega$ value by 1.0 MeV, i.e. taking $\hbar \omega = 15.6 \pm 1.0$ MeV, the obtained excitation spectrum of Λ^6He is almost same as the calculation with $\hbar \omega = 15.6$ MeV. The changes in the excitation energies of the Λ^6He $3/2^+$ and $5/2^+$ levels are less than 0.015 MeV. However, nuclear radius calculations would be more sensitive to the choice of $\hbar \omega$ value.

As usual, the Coulomb interaction is not included in the shell-model calculation, to keep the isospin symmetry. It has been known the Coulomb effect on the excitation spectrum of a nucleus is small [52]. However, the Coulomb energy needs to be included in the calculation of nuclear binding energy. In [47], the detailed description of the binding energy calculation has been given, including the calculation of the core energy. It is an advantage of the Gogny-interaction shell model that the core energy can be calculated by the model itself without need of experimental data for the core energy [47]. Another advantage of using the Gogny force is that SPEs can be obtained with the same TBMEs [47] with no need of experimental SPEs. SPEs are important inputs in empirical-interaction shell-model calculations [49].
In the present model, the SPEs are calculated by [47]

\[e_i = t_i + \frac{1}{2(2j + 1)} \sum_f \sum_{JT} (2J + 1)(2T + 1)(ii^cJT) | V_{\text{NN,Gogny}} | ii^cJT, \]

where \(t_i \) is the kinetic energy of the \(i \)th valence particle. In the HO basis, it is half of the shell energy if we truncate the model space within one major HO shell. For the \(0p \) shell, \(t_i = \frac{1}{2} (2n + l + \frac{3}{2}) \hbar \omega = \frac{2}{3} \hbar \omega \) (here \(n = 0 \) and \(l = 1 \) for the \(0p \) shell). \(i^c \) is for an orbit in the core. This means that the single-particle energy is the sum of the kinetic energy and the interaction with all the particles in the core. \(J \) and \(T \) are the coupled angular momentum and isospin, respectively, which appear already in equation (3). Due to density dependence of the Gogny interaction, the SPEs are nucleus dependent, since different nuclei can have different densities. This means that different SPEs are used for the shell-model calculations of different nuclei. In fact, it is an aspect of self-consistence of the model. For example, with the D1S Gogny force, we obtain the SPEs \(e_{0p3/2} = 0.482 \text{ MeV} \) and \(e_{0p1/2} = 5.572 \text{ MeV} \) for \(^6\text{He} \), while the CK interaction took \(e_{0p3/2} = 1.428 \text{ MeV} \) and \(e_{0p1/2} = 1.570 \text{ MeV} \) which were obtained as parameters by fitting the experimental spectra of the \(p \)-shell nuclei [41]. The experimental SPEs extracted from \(^5\text{He} \) and \(^4\text{He} \) data are \(e_{0p3/2} = 0.735 \) and \(e_{0p1/2} = 2.005 \text{ MeV} \).

We summarize that the present shell model takes \(^4\text{He} \) as the core, assumes the hyperon staying in the lowest \(0s_{1/2} \) orbit and valence nucleons moving in the \(0p \) shell. In such calculations, model dimensions are small. The largest dimensions appear in \(^{10}\text{B} \) for the nuclei investigated and in \(^{11}\text{B} \) for the hypernuclei. The dimension is 84 in \(^{10}\text{B} \), while it is 500 in \(^{11}\text{B} \) (with \(\Lambda-\Sigma \) coupling).

Based on the Gogny NN interaction [44] and the \(\Lambda N \) interaction [7, 19, 35, 48], we have calculated the excitation spectra of the \(p \)-shell hypernuclei in which experimental spectra have been available, shown in figures 2 and 3. The spectra of the adjacent nuclei have also been calculated and shown to see how the spectra change with adding a \(\Lambda \) hyperon into the nucleus. We see that the Gogny+\(\Lambda N \) shell-model calculations reproduce well the observed spectra in both hypernuclei and nuclei in this mass region. The results are also consistent with the calculations with the CK NN interaction [41].

The level structure of the \(^{12}\text{C} \) hypernucleus was determined at Hyperball2 by recent \(\gamma \)-ray spectroscopy via the \(^{12}\text{C}(\pi^+ , K^+\gamma) \) reaction [54]. Three experimental excitation levels were determined, corresponding to splitting from the \(3/2^- \) ground state, \(1/2^- \) and \(3/2^+ \) excited states in \(^{12}\text{C} \). As shown in figure 4, the Gogny force well reproduces the experimental spectrum. The yet-unobserved \(3/2^- - 2/2^- \) doublet states with a \(\Lambda \) hyperon coupled to the \(5/2^- \) state of \(^{12}\text{C} \) are predicted in the present calculation. For the \(3/2^- - 2/2^- \) doublet, in the earlier publication [55] of the Hyperball2 experiment, the authors reported the \(3/2^- - 2/2^- \) doublet states which were between doublets \(1/2^- - 2/2^- \) and \(0^- - 1/2^- \) [55]. But in their later publication [54], the \(3/2^- - 2/2^- \) doublet states did not appear in the experimental level scheme of the \(^{12}\text{C} \) hypernucleus. This would be because no \(\gamma \) rays from the \(3/2^- - 2/2^- \) doublet states had been observed practically.

Recently, the high-resolution spectroscopic experiments for \(^3\text{He} \), \(^3\text{Li} \), \(^{10}\text{Be} \) and \(^{12}\text{B} \) have been performed at JLab. The mass spectroscopy of the \(^3\text{He} \) hypernucleus was performed using the \(^2\text{Li}(e, e'K)^3\text{He} \) reaction [56]. As shown in figure 5, two levels were observed where the lower level was assigned as the ground state and the higher level was assigned as a mixture of \(3/2^- \) and \(5/2^- \) states, supporting the ‘gluelike’ behavior of the \(\Lambda \) hyperon. In figure 5, we compare our calculations with other theoretical calculations [57, 58]. It is found that the Gogny+\(\Lambda N \) model is consistent with those calculated in [57, 58].

5
Figure 2. Spectra for \(p \)-shell hypernuclei \(^{7}\text{Li}\), \(^{8}\Lambda\text{Li}\), \(^{8}\text{Be}\), \(^{9}\Lambda\text{Be}\), \(^{9}\text{B}\), \(^{10}\Lambda\text{B}\), \(^{15}\text{O}\), and \(^{16}\Lambda\text{O}\), and adjacent nuclei, calculated by the Gogny+\(\Lambda N \) interaction (indicated by Gogny) and by the (8-16) TBME(CK)+\(\Lambda N \) interaction [41] (indicated by CK), compared with experimental data [33]. The experimental spectra of adjacent nuclei are taken from [53].
Figure 3. Similar to figure 2, but for ^7Li, ^9B, ^{12}C, and ^{14}N and their adjacent nuclei. The experimental levels without energy numbering means that their energies have not been resolved exactly in experiments. The data are from [53] for nuclei and [33] for hypernuclei.
The electroproduction of the hypernucleus ^9Li was studied on a ^9Be target with sub-MeV energy resolution [59]. Four levels were obtained by fitting the $^9\text{Be}(e, e'\Lambda K)^9\text{Li}$ spectrum. Figure 6 shows the experimental level energies [59] and calculations by the shell-model with the Gongny+ΛN, CK+ΛN, and Millener’s calculation [8] which used the ^8Li spectrum and ΛN interaction. The experiment [59] has not pinned down the spins and parities of the states, but the first two levels were assumed to be the $5/2^+$ and $3/2^+$ doublet. The third experimental peak observed in the $^9\text{Be}(e, e'\Lambda K)^9\text{Li}$ spectrum was assigned as a mixture of $3/2^+$ and $1/2^+$ states with a doublet spacing <0.1 MeV which cannot be resolved with the energy resolution of 730 keV in the experiment [59]. The fourth experimental peak was assumed to be the second $5/2^+$ state [59]. Our calculation well reproduces the experiment data.

The high-resolution spectroscopy of the hypernucleus $^{11}\Lambda \text{C}$ was carried out at JLab, using the $^{10}\text{Be}(e, e'\Lambda K)^{11}\Lambda \text{C}$ reaction, with a resolution of ~0.78 MeV [60]. Four levels were obtained. Figure 7 shows the excitation energies of the levels corresponding to the four

![Figure 4](image1.png)

Figure 4. Similar to figures 2 and 3, but for ^{11}C and $^{12}\Lambda \text{C}$. The experimental data are from [53] for ^{11}C and [54] for $^{12}\Lambda \text{C}$.

![Figure 5](image2.png)

Figure 5. Similar to figures 2 and 3, but for ^6He and $^7\Lambda \text{He}$, compared with the calculations by translational invariant shell-model (TISM) [57], four-body cluster model (Cluster) [58]. The experimental data are from [53] for ^6He and [56] for $^7\Lambda \text{He}$.
experimental peaks [60], compared with various calculations. It is rather convincing to assign the first peak to be the mixture of 1 and 2 states. However, various theoretical calculations disagree with each other in the assignment of the second and third levels. The present calculations reproduce well the experimental spectrum, though higher resolution of spectroscopy is needed to confirm the results.

The spectroscopic experiment for the hypernucleus $^{11}\Lambda$B was carried out at JLab, using the 11C($e, e'K^+\Lambda$) reaction [64]. Eight peaks in the reaction spectrum were obtained with
statistical significance larger than 4σ. The first four peaks are considered to have a s-shell Λ coupled to 11B that has a negative-parity structure, while other four peaks correspond to Λ in the p-shell. In this paper, we can only calculate the states with the Λ in the s shell, because we have no ΛN interaction for the p-shell Λ. The calculations are given in figure 8. For the negative-parity states in which the Λ stays in the s shell, the first two levels are the ground-state doublet states $^{11}_{-1}$ and $^{11}_{-2}$ with a Λs coupled to the $3/2^-$ 11B ground state. The third experimental peak is considered to be the lower member of the second doublet ($^{11}_{-3}$ and $^{11}_{0}$) with 11B in the $1/2^-$ configuration. The $^{11}_{0}$ and $^{11}_{1}$, as well as the third doublet ($^{11}_{2}$ and $^{11}_{3}$), were predicted to have small cross sections and thus are difficult to be observed without sufficient statistics and a better signal/background ratio [64]. Shell-model calculations based on the Gogny or CK interaction reproduce well the experimental spectra of both 11B and $^{12}_{Λ}B$.

The advantage to use the Gogny force is that we can calculate the spectra of a wide range of nuclei without need to adjust parameters. The density-dependent term provides an equivalent three-body force. In general, the Gogny interaction gives better calculations for the neutron-rich p-shell hypernuclei than the CK interaction. We have estimated the discrepancy between experimental data and calculations, using $\Delta = \left[\frac{1}{N} \sum (E_{\text{exp}} - E_{\text{cal}})^2 / E_{\text{exp}}^2 \right]^{1/2}$, with E_{exp} and E_{cal} being the experimental and calculated energies of an excited level, respectively, and N being the total number of the excited levels considered in figures 2–8. The Gogny interaction gives the overall discrepancies of $\Delta = 0.67$ for all the nuclei investigated, $\Delta = 0.37$ for all the hypernuclei and $\Delta = 0.51$ for the nuclei and hypernuclei together, while the CK interaction gives $\Delta = 0.76$ for the nuclei, $\Delta = 0.38$ for the hypernuclei and $\Delta = 0.57$ for the nuclei and hypernuclei together. We have also checked how the calculations depend on the choice of the Gogny parameterizations. Figure 9 shows the calculations based on the D1S, D1M and D1N sets of the Gogny parameters for the couple of 8He and Λ^7He as examples. We see that all the parameterizations give reasonable descriptions of the excitation spectra.

Electromagnetic transition strengths are important physical observables. In the present work, we have calculated the reduced electric quadrupole transition probability $B(E2)$, defined by [51]
where the \(E_2 \) transition operator is given by
\[
\langle \hat{O}_2 \rangle = \hat{O}_2 Y_{2}^{m} \]
with the spherical harmonic function \(Y_{2}^{m} \). The effective charge \(e_{\text{etz}} \) for \(p \)-shell nuclei takes the commonly used values of \(e_p = 1.5e \) and \(e_n = 0.5e \). The single-particle matrix elements for \(E_2 \) operator is given by
\[
\langle l_a l_b | O(E2) | l_c l_d \rangle = (-1)^{l_a + l_b} \frac{1}{2l_c + 1} + (-1)^{l_c + l_d + l_b} \frac{1}{2} \sqrt{\frac{5(2l_a + 1)(2l_c + 1)}{4\pi}} \left(\begin{array}{c} J_a \ 0 \\ 1/2 \end{array} \right) \left(\begin{array}{c} J_b \ 0 \\ 1/2 \end{array} \right) \langle R_{l_a,l_b} | r^2 | R_{l_c,l_d} \rangle e_{lc},
\]
where \(R_{a} \) is the radial component of the HO wave function. The notation is standard with \(a \) and \(b \) indicating the initial and final states [51]. Table 1 shows the \(B(E2) \) calculations based on the Gogny and CK interactions, compared with experimental data and the cluster-model calculations given in [65].

In [66], the authors claimed an experimental evidence that the addition of a \(\Lambda \) hyperon to \(^6\text{Li} \) nucleus causes the shrinkage of the nuclear size. We use the approximation given in our previous paper [68] to calculate nuclear charge radius, but the Gogny or CK shell-model wavefunctions are used in the calculations. Both Gogny and CK calculations give
\((r_{ch})^2 = 2.137 \) fm and \(2.127 \) fm for \(^6\)\(^\text{Li}\) and \(^7\)\(^\text{Li}\), respectively, which leads to a shrinkage of 0.01 fm in the charge radius. The experimental charge radius of \(^6\)\(^\text{Li}\) is 2.589 fm \(^{[69]}\). The cluster-model calculations gave the size shrinkage of 0.15–0.33 fm depending on the model parameters used \(^{[70]}\). In the present shell-model calculations, we assume a core, i.e. \(^4\)\(^\text{He}\). The size calculation might need to consider the possible change of the core when a hyperon is added to the nucleus. The model space and \(h\omega \) choice would also affect the calculation of nuclear size.

4. Conclusion

We have systematically investigated the excitation spectra of \(p \)-shell hypernuclei using shell model with the Gogny+\(\Lambda N \) interaction including the \(\Lambda N-\Sigma N \) and \(\Sigma N-\Sigma N \) couplings. With its density-dependence property, the Gogny force can give reasonable descriptions in spectra, binding energies and the electric quadrupole transition probabilities \(B(E2) \) for a wide range of \(p \)-shell nuclei without adjusting parameters. For \(^5\)\(^\text{Li}\), \(^7\)\(^\text{Be}\), \(^9\)\(^\text{Be}\), and \(^{10}\)\(^\text{B}\), the shell-model calculations with the Gogny+\(\Lambda N \) interaction gives good agreements with \(\gamma \)-ray data. For \(^7\)\(^\text{Li}\), \(^{11}\)\(^\text{B}\), \(^{13}\)\(^\text{C}\), \(^{15}\)\(^\text{C}\), and \(^{15}\)\(^\text{N}\), some of calculated energy spacings deviate slightly from \(\gamma \)-ray data, but could be improved by further calculations, e.g. by increasing model space and/or adjusting the Gogny parameters specially for shell-model calculations. With the recent high-resolution spectroscopic experiments for \(^7\)\(^\text{He}\), \(^9\)\(^\text{Li}\), \(^9\)\(^\text{Be}\), and \(^{10}\)\(^\text{B}\) performed at JLab, we have compared our calculations with the data as well as other theoretical predictions. Overall agreements have been obtained. We have shown that the Gogny+\(\Lambda N \) interaction provides reasonable descriptions for both nuclei and hypernuclei of the \(p \) shell.

Acknowledgments

We would like to thank B Dai and JG Li for their useful comments and discussions. We are also grateful to H Zeng for his help in computing coding. This work has been supported by the National Key R&D Program of China under Grant No. 2018YFA0404401; the National Natural Science Foundation of China under Grants No. 11835001, No. 11575007, No. 11921006 and No. 11847203; the China Postdoctoral Science Foundation under Grant No. 2018M630018, and Beijing innovation research program for undergraduates. We acknowledge the High-Performance Computing Platform of Peking University for providing computational resources.

ORCID iDs

F R Xu \(\text{https://orcid.org/0000-0001-6699-0965} \)

References

[13] Lu B N et al 2011 Quadrupole deformation \((\beta, \gamma)\) of light \(\Lambda \) hypernuclei in a constrained relativistic mean field model: Shape evolution and shape polarization effect of the \(\Lambda \) hyperon Phys. Rev. C 84 014328

[17] Li W Y, Cui J W and Zhou X R 2018 Structure of \(^{13}\text{Be} \) and \(^{15}\text{Be} \) using the beyond-mean-field Skyrme-Hartree-Fock approach Phys. Rev. C 97 034302

[23] Itonaga K, Motoba T and Bando H 1990 p-shell hypernuclei via \((K^+, \pi^-)\), \((\pi^+, K^-)\) and \((K^+, \pi^-)\) reactions: a systematic calculation with configuration mixing Prog. Theor. Phys. 84 291–316

[27] Yamamoto Y and Bando H 1990 Hypernuclear properties derived from the Nijmegen Soft-Core OBE potential Prog. Theor. Phys. 83 254–64

[31] Umeya A and Harada T 2011 Doublet-spacing enhancement caused by \(\Lambda N \) – \(\Sigma N \) coupling in \(\Lambda Li \) hypernuclear isotopes Phys. Rev. C 83 034310
[35] Umeya A and Harada T 2009 $\Lambda–\Sigma$ coupling effect in the neutron-rich Λ hypernucleus 8Li in a microscopic shell-model calculation Phys. Rev. C 79 024315
[41] Cohen S and Kurath D 1965 Effective interactions for the 1p shell Nucl. Phys. 73 1–24
[54] Hosomi K et al 2015 Precise determination of 12C level structure by γ-ray spectroscopy Prog. Theor. Exp. Phys. 2015 081D01
[55] Hosomi K et al 2013 Gamma-ray spectroscopy of 12C via the (π^+, k^+) reaction Nucl. Phys. A 914 184–8
[63] Isaka M, Homma H, Kimura M, Dote A and Ohnishi A 2013 Structure of Be hyper isotopes Few-Body Syst. 54 1219–22
[64] Tang L et al 2014 Experiments with the high resolution Kaon spectrometer at JLab Hall C and the new spectroscopy of 12B hypernuclei Phys. Rev. C 90 034320
[66] Tanida K et al 2001 Measurement of the B(E2) of $^{6}_3\Lambda$Li and shrinkage of the hypernuclear size
Phys. Rev. Lett. 86 1982

Phys. Rev. C 94 014303

[69] Angeli I and Marinova K P 2013 Table of experimental nuclear ground state charge radii: an update At. Data Nucl. Data Tables 99 69–95

[70] Kanada-En’yo Y 2018 Excitation energy shift and size difference of low-energy levels in p-shell Λ hypernuclei Phys. Rev. C 97 024330