Low-Temperature CO₂ Methanation over CeO₂-Supported Ru Single Atoms, Nanoclusters, and Nanoparticles Competitively Tuned by Strong Metal–Support Interactions and H-Spillover Effect

Yu Guo,† Sheng Mei,† Kun Yuan,† De-Jiu Wang,† Hai-Chao Liu,§,†,‡ Chun-Hua Yan,* and Ya-Wen Zhang*†

†Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, and ‡Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China

ABSTRACT: CO₂ hydrogenation for the acquisition of value-added chemicals is an economical means to deal with the CO₂-relevant environmental problems, among which CO₂ reduction to CH₄ is an excellent model reaction for investigating the initial steps of CO₂ hydrogenation. For the supported catalysts commonly used in such reactions, the tuning of the interfacial effect between metal centers and supporting materials so as to obtain superior low-temperature CO₂ methanation performance is a significant but challenging subject. In this work, we altered the size regimes of the Ru deposits in Ru/CeO₂ assemblies and uncovered the competitive relationship between the strong metal–support interactions (SMSI) and the H-spillover effect in determining the methanation activities by some ex situ and in situ spectroscopic techniques coupled with density functional theory (DFT) calculations. For CeO₂ nanowire supported single Ru atoms, Ru nanoclusters (ca. 1.2 nm in size), and large Ru nanoparticles (ca. 4.0 nm in size), the nanoclusters show the most outstanding low-temperature CO₂ methanation activity and 98–100% selectivity, with a turnover frequency (TOF) of 7.41 × 10⁻³ s⁻¹ at 190 °C. The negative CO₂ reaction order decreases their absolute values from single atoms to nanoclusters and turns positive in nanoparticles, while the positive H₂ reaction order follows the reverse tendency. In situ DRIFTS measurements demonstrate that the dominant reaction pathway is the CO route, in which metal carboxyls are the critical intermediates and the active sites are those Ce³⁺–OH sites and Ru sites near the metal–support interfaces in charge of CO₂ dissociation and carbonyl hydrogenation, respectively. Meanwhile, the strongest SMSI and H-spillover effect are respectively encountered in supported single Ru atoms and large Ru nanoparticles, with the activation of metal carboxyls and the dehydroxylation of the support surfaces suppressed correspondingly. The two factors reach a balance in CeO₂-supported Ru nanoclusters, and the methanation activity is therefore maximized. A mechanistic understanding of the interfacial effect in tuning the CO₂ methanation activities would shed light on the ingenious design of the CO₂ hydrogenation catalysts to utilize the SMSI and H-spillover effect to an appropriate degree and avoid their possible suppressions that would take place in extreme cases.

KEYWORDS: CO₂ hydrogenation, strong metal–support interactions, H-spillover effect, single atom, nanocluster, nanoparticle

1. INTRODUCTION

CO₂ capture and recycling (CCR) is an effective approach to coping with the increasingly severe greenhouse effect. A series of value-added chemicals including CO, CH₄, CH₃OH, HCOOH, C₂H₄, and C₂H₂ hydrocarbons can be obtained via heterogeneous catalysis.¹ Recently developed CO₂ electro- and photoreductions shed light on such catalytic reactions,² while CO₂ thermal reduction with H₂ by heterogeneous catalysts is still the method with the most in-depth investigation and development.⁵,⁶ The hydrogenation catalysts are always designed as supported catalysts to anchor the active metal components on the high-surface-area supports,⁷ preventing the metal particles from agglomeration.⁸ The supported assemblies are always regarded as the metal–oxide heterojunctions,⁹ where the metal–support interfaces play pivotal roles in governing the electronic and chemical properties of the catalysts and the surface chemistry in the hydrogenation process. Despite the varied hydrogenation products, the facile activation of CO₂ and H₂ is the prerequisite for achieving considerable catalytic activities and selectivities, and the interfacial effect is in direct correlation with the charge transfer and mass transport in the activation of reactant molecules. Therefore, how to tailor such interfacial effects to obtain superior catalytic performance in CO₂ hydrogenation is a very attractive but challenging subject.
The interfacial effects in supported metal catalysts are affected by a series of structural factors including the particle size, the alloying degree of the active metals and the surface area, the crystal planes, the Lewis acidity or reducibility, and the porosity of the supports, which have all been demonstrated to readily tune the activities and selectivities in CO₂ hydrogenation. Among them, the size effect is the most debated and confusing matter, for the optimized sizes of metal particles vary greatly in different catalytic assemblies: for instance, 15 nm for Rh/γ-Al₂O₃ and 2.5 nm for Ru/TiO₂. This size variation is due to the nature of the supports; for example, CO₂ methanation is an excellent model reaction to investigate in extended size regimes.

More recently, supported single-atom catalysts have been developed to work remarkably in hydrogenation reactions such as Pt₁/Fe₃O₄ for CO oxidation and Rh₁/CeO₂ for CO₂ methanation. In essence, CO₂ methanation is an excellent model reaction to probe into the initial steps of CO₂ hydrogenation, for the generation of CH₄ and CO involves the fundamental steps of CO₂ dissociation and hydrogenation, after which the formation of C–C bonds becomes possible, and the reaction proceeds at atmospheric pressure and low temperatures, in contrast to the harsh reaction conditions for other products. The size effect in CO₂ methanation thereby needs systematic investigation in extended size regimes.

Distinct interfacial effects underlie the assemblies with active metal components in different size regimes and finally give rise to the catalytic contrasts. The interfacial effects in supported hydrogenation catalysts primarily consist of strong metal-support interactions (SMSI) and H-spillover effects. The former was first found by Tauser et al. and differs greatly in type and degree from the other metal-support interactions. Having been studied and replenished over the past 40 years, SMSI has been extended to group 8 metal catalysts, whereas how the two effects coexist in the supported methanation catalysts, whereas how the two interfacial effects exert synergistic influences on the methanation performance is still unknown.

Herein, we demonstrate the notably different CO₂ methanation activities of CeO₂ nanowire supported single Ru atoms, Ru nanoclusters (ca. 1.2 nm in size), and Ru nanoparticles (ca. 4.0 nm in size), which have been proved highly active at low temperatures. Ru/CeO₂ catalysts in different size regimes with varied intensities of SMSI and H-spillover effects were investigated via a series of ex situ and in situ spectroscopic techniques combined with density functional theory (DFT) calculations, and the SMSI and H-spillover effects were revealed to display a competitive relationship to jointly govern the methanation activity.

2. EXPERIMENTAL SECTION

2.1. Chemicals. CeCl₃·7H₂O (AR, Sinopharm Chemical Corp., People’s Republic of China), NdCl₃·6H₂O (AR, Beijing HWRK Chemical Corp., People’s Republic of China), GdCl₃·6H₂O (J&K Chemical Corp., People’s Republic of China), RuCl₃·6H₂O (AR, Sinopharm Chemical Corp., People’s Republic of China), NaCl (AR), NaOH (AR), and NaBH₄ (AR) were used as the starting materials.

2.2. Synthesis of Ru/CeO₂ NWs. Ce(OH)₃ nanowires were synthesized via the reported hydrothermal method. A 279 mg portion of CeCl₃·7H₂O, 3.6 g of NaOH, and 523 mg of NaCl were dissolved and mixed in 15 mL of water, and this mixture was placed in a 25 mL Teflon-lined autoclave and heated at 180 °C for 24 h. The nanowires were collected by centrifugation, washed twice with deionized water, and redispersed in 12 mL of water with the pH value adjusted to 8.0–8.5. Nd- and Gd-doped Ce(OH)₃ nanowires were obtained following the same steps except that 251.5 mg of CeCl₃·7H₂O and 26.9 mg of NdCl₃·6H₂O were added instead of 279 mg of CeCl₃·7H₂O.

Ru/CeO₂ composites were fabricated by the impregnation method. CeO₂-supported Ru single atoms (denoted as Ru(SA)/CeO₂) were obtained by adding 490 µL of RuCl₃ solution (0.075 mol L⁻¹) to the suspension of Ce(OH)₃ nanowires and stirring the mixture for 2 h at room temperature, while in the preparation of Ru nanoclusters (denoted as Ru(NC)/CeO₂), 970 µL of the RuCl₃ solution was added and the mixture was stirred for 5 h. The stirring time was the critical parameter to control the adsorption extent of the hydrated Ru cations and the final size of the Ru deposits. In addition, Ru nanoparticles (denoted as Ru(NP)/CeO₂) were synthesized via a fast reduction with NaBH₄ added drop by drop. The three products were washed twice with deionized water and then dried at 70 °C for at least 12 h, after which the products were converted to Ru/CeO₂ assemblies. The samples of Ru(SA)/CeO₂, Ru(NC)/CeO₂, and Ru(NP)/CeO₂ were all prepared with good reproducibility.

2.3. Characterization. Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), and element mapping were conducted on a FEG-TEM instrument (JEM-2100F, Tokyo, Japan).
JEOl, Japan) operated at 200 kV. Aberration-corrected high-angle annular dark field scanning transmission electron microscopy (cs-corrected HAADF-STEM) and element mapping were obtained from a FEI TITAN aberration-corrected Themis instrument operated at 300 kV. The samples sparsely dispersed in ethanol were dropped on copper grids coated with amorphous carbon membranes and dried for TEM observations. The size distribution of Ru components was analyzed on the basis of the statistics of over 50 deposits. The dispersion of Ru deposits (D) was further calculated from the equation:

$$D = \frac{6V/a}{d} = \frac{6Mn_i}{\rho N_s d}$$

where V denotes the volumes occupied by a Ru atom in the bulk of the metal (\AA^3), a denotes the surface area occupied by a Ru atom on the polycrystalline surface (\AA^2), d denotes the mean particle size (\AA), M denotes the atomic mass (g mol$^{-1}$), n_i denotes the mean number of atoms in the exposed plane (m$^{-2}$), ρ denotes the mass density (g cm$^{-3}$), and N_s is Avogadro's number (6.02×10^{23} mol$^{-1}$). For hcp Ru exposed (001) surfaces, eq 1 is converted to

$$D = \frac{12.9}{d}$$

The loading amount of Ru on CeO$_2$ was analyzed from inductively coupled plasma objective emission spectroscopy (ICP-OES) on a Profile Spec ICP-OES spectrometer (Leeman, USA). X-ray photoelectron spectroscopy (XPS) data were acquired on an Axis Ultra XPS spectrometer (Kratos, U.K.) with Al K\alpha radiation operated at 225 W. The binding energies were calibrated by the C 1s peak at 284.8 eV. Raman spectra were collected on a Jobin-Yvon HR800 laser Raman microscope with 488 nm laser excitation. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses of the Ru K edge (22117 eV) were carried out on the BL14W1 beamline of the Shanghai Synchrotron Radiation Facility (SSRF) at 3.5 GeV with a maximum current of 300 mA. A Si (111) double-crystal monochromator was utilized. The IFFEFIT 1.2.11 data analysis package (Athena, Artemis) was used for data extraction and curve fitting.

Temperature-programmed hydrogen reduction (H$_2$-TPR) and desorption (H$_2$-TPD) were conducted on a Xianquan TP-5080 adsorption apparatus. In H$_2$-TPR, the samples (50 mg) were heated from 30 to 800 °C with a heating rate of 10 °C/ min under 30 mL/min of flowing 5% H$_2$/N$_2$. In H$_2$-TPD, the samples were pretreated at 350 °C under 5% H$_2$/N$_2$ for 2 h, purged with N$_2$ for 0.5 h, and then cooled to 30 °C to adsorb H$_2$. After they were purged with N$_2$ for 30 min, the samples were heated to 800 °C at a rate of 10 °C/min. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was measured on a Bruker TENSOR 27 spectrometer. The samples were exposed to a gas mixture of CO$_2$, H$_2$, and He with a total flow rate of 40 mL/min in a Praying Mantis DRIFTS cell. Prior to the IR measurements, the samples were pretreated in flowing 5% H$_2$/He at 300 °C for 30 min.

2.4. Catalytic Tests.

The CO$_2$ hydrogenation reactions took place in a fixed-bed reactor at atmospheric pressure. A 50 mg portion of the catalyst was mixed with quartz sand (40–70 mesh) and loaded in a quartz tube (1 cm in diameter). Prior to the catalytic test, the samples were in situ activated in H$_2$ at 350 °C for 120 min. The reactant gas consisted of CO$_2$ (2 mL/min), H$_2$ (8 mL/min), and He (30 mL/min). The outlet gas mixture was analyzed online by an Agilent 7890A gas chromatograph equipped with a TCD detector and a carbon molecular sieve column (Carboxen 1000, Supelco, USA). The methanation activity was assessed via turnover frequency (TOF), which was normalized by the loading amount and the dispersion of Ru deposits on CeO$_2$ supports:

$$TOF = \frac{F_{CO_2}X_{CH_4}M}{WDx}$$

where F_{CO_2} denotes the molar number of CO$_2$ molecules at the reaction temperature per unit time (mol s$^{-1}$), X_{CH_4} denotes the proportion of CH$_4$ molecules in the outflow, M is the atomic mass of Ru (g mol$^{-1}$), W denotes the weight of the catalyst packed into the reactor (g), D denotes the dispersion of Ru deposits, and x denotes the loading amount of Ru deposits on the CeO$_2$ supports.

2.5. First-Principles Calculations.

DFT calculations were performed with the VASP package. The exchange-correlation energy functional was described in the Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA). The k point was set to the y point in the Brillouin zone. The atoms were presented by projector augmented-wave (PAW) pseudopotentials. The kinetic energy cutoff was 500 eV for the plane-wave basis set. CeO$_2$ supercells ($2 \times 2 \times 2$) were built, with (110) surfaces exposed and the bottom two layers fixed. Vacuum layers (15 Å) were added to the CeO$_2$ slab, and 5 eV of U was imposed to the Ce 4f orbitals. Each structure was relaxed until the residual force was smaller than 0.02 eV/Å.

3. RESULTS AND DISCUSSION

3.1. Preparation of Ru/CeO$_2$ Assemblies and Catalytic Tests of CO$_2$ Methanation.

According to the TEM observations, the well-crystallized CeO$_2$ nanowires obtained via the hydrothermal method had a length of 1–3 μm and a width of 10–80 nm. In particular, the Ce(OH)$_4$ intermediates formed under subcritical hydrothermal conditions were transformed into CeO$_2$ nanowires44 in the air, which preferably grew along the [110] direction (Figure S1b) and were mainly enclosed by the (110) surfaces that have been observed in CeO$_2$ nanorods,53 nanowires,51 and nanosheets.54 The size and coordination structure of the Ru deposits were determined by a combination of HRTEM, STEM, and XAFS analyses (Figures 1 and 2, Figure S2, and Table 1). Owing to the limitation of resolution, the bright dots of Ru atoms cannot be observed in the HAADF-STEM image of Ru(SA)/CeO$_2$, but EDS mapping proves the existence of highly dispersed Ru species on the CeO$_2$ nanowires (Figure 1a,b). The corresponding Fourier transform of the EXAFS profile was fitted by two Ru–O paths (Figure S3a) and showed no signal at ca. 2.4 Å (Figure 2b) which is representative of Ru–Ru coordination (Figure S3b,c), indicating that the Ru element of Ru(SA)/CeO$_2$ was dispersed as single atoms. For Ru(NC)/CeO$_2$, some nanoclusters were found to be located on the edge of the nanowires, and a comparison between the HAADF-STEM image and the EDS mapping certifies that the nanoclusters were composed of Ru atoms (Figure 1c,d). It is apparent from the element mapping result that Ru species were more aggregated in comparison to those of Ru(SA)/CeO$_2$, and the mean size of the nanoclusters was 1.18 ± 0.25 nm (Figure S2b and Table 1) with ca. 100 Ru atoms. The adhered Ru nanoclusters were crystallized to some...
degree, and the lattice fringes of hexagonal Ru (101) could be distinguished in some clusters on the edges of nanowires (Figure S2a). The Ru particles in Ru(NP)/CeO₂ exhibited distinct lattice fringes representative of fine crystallinity (Figure 1f), with a mean size of 4.01 ± 0.80 nm (Figure S2d and Table 1). Accordingly, the dispersions of Ru deposits (D) in Ru(NC)/CeO₂ and Ru(NP)/CeO₂ were calculated from their mean sizes via eq 1 (Table 1). The single Ru atoms and the Ru atoms of Ru(NC)/CeO₂ (ca. 1.2 nm) were all 100% dispersed, while 32% of the Ru atoms in Ru nanoparticles (ca. 4.0 nm) were exposed. The Ru K edge XANES curves of the three catalysts give the oxidation states of the Ru species: that is, highly oxidized single Ru atoms for Ru(SA)/CeO₂, partially reduced Ru clusters for Ru(NC)/CeO₂, and largely reduced Ru particles for Ru(NP)/CeO₂ (Figure 2a and Table 1).

The three catalysts exhibited distinct differences in the CO₂ methanation activities, while the selectivities of CH₄ all reached 98−100% (Figure S4a), which is in accord with the superior methanation activity of Ru. As a comparison, the CeO₂ support showed little activity toward CO₂ hydrogenation and no CH₄ selectivity under our experimental conditions (Figure S4a). Among the three catalysts, Ru(NC)/CeO₂ showed the highest activity, with a TOF of 7.41 × 10⁻³ s⁻¹ at 190 °C (Table 2), which is 1.6 times higher than the TOF of Ru(SA)/CeO₂ and 14.0 times higher than that of Ru(NP)/CeO₂. The methanation activities of the catalysts in this work are all much higher than the values of Ru/CeO₂ catalysts reported in other literature works ¹⁴,¹⁵ under similar reaction conditions, possibly due to the disordered atomic arrangement (Figure S2a,c) of the CeO₂ support.
support surface caused by the direct impregnation of the as-prepared Ce(OH)3 nanowires in the solution of Ru precursor during our catalyst preparation. Further kinetic tests demonstrated that the activation energy E_a decreased from 82.4 kJ mol$^{-1}$ to 77.4 kJ mol$^{-1}$ with an increase in the size regime of Ru deposits from single atom to large particles (Figure 3 and Table 2). What the size regime of Ru deposits affects directly is the metal–support interface area; therefore, the active sites should be located at the interface to account for the variations in E_a. On the other hand, the effect of the CeO2 support was investigated by carrying out the same tests on rare-earth (Nd, Gd)-doped Ru(NC)/CeO2 while the Ru deposits were kept in the same size regime (Figure S5). CeO2 always works in redox reactions with the participation of active lattice oxygen atoms and defect sites.55 The nonequivalent doping of CeO2 support would introduce a mass of oxygen vacancies, as can be detected by Raman spectroscopy (Table S2). The methanation activities of the doping samples followed the sequence undoped > Gddoped > Nd-doped (Figure 3), and the values of E_a were nearly unaffected (Table 2). The size regime of Ru deposits clearly exerts a more evident effect on the activities; thus, in terms of catalytic stability, the three catalysts had little difference, all showing 20% losses of CH4 production rates after 500 min of reaction at 220 °C (Figure S4b). In addition, the size of Ru nanoclusters in Ru(NC)/CeO2 after the stability test was measured to be 1.35 ± 0.23 nm, which merely increased 14% in comparison to the original cluster size and indicates the good stability of this catalyst in long-term catalytic tests (Figure S6).

The apparent reaction orders of CO2 were negative on Ru(SA)/CeO2 and Ru(NC)/CeO2 (Table 2), and the absolute value decreased from −0.50 to −0.42, which indicates some strongly adsorbed intermediate derived from CO2 on the catalyst surface and consequently hinders the reaction; such a hindering effect weakened from Ru(SA)/CeO2 to Ru(NC)/CeO2. From Ru(NC)/CeO2 to Ru(NP)/CeO2, the CO2 reaction order even turned into the positive value of 0.74. Thus, the hindrance of the carbon-containing intermediate is completely eliminated in Ru(NP)/CeO2. The tendency is consistent with the reduction of activation energies (Table 2), thereby proving that the rate-determining step in this reaction is the conversion of certain carbon-containing intermediates on Ru sites. On the other hand, the reaction orders of H2 were all positive and increased from 0.30 to 0.67 with the increase of the Ru size regime, suggesting the weighted dependence of methanation activities on the H2 partial pressure from Ru(SA)/CeO2 to Ru(NP)/CeO2.

3.2. SMSI in the Opposite Variation of H-Spillover Effects. With the active sites confirmed to be located in the interface via kinetic measurements, the interfacial effects between the active Ru component and the CeO2 support were brought forth to account for the activity difference of the Ru/CeO2 catalysts in varied size regimes. The interfacial effects in the literature have been summarized to include charge transfer, encapsulation, surface reconstruction, spillover, perimetric activation, synergistic interaction, and so on, among which charge transfer corresponds to the electronic interaction of SMSI and encapsulation and surface reconstruction belong to the chemical counterpart. From previous studies on the structure–reactivity relationships of CO2 hydrogenation, both SMSI and H-spillover effects have been discussed individually to have strong effects on the hydrogenation performances. Hence, we started the investigation of interfacial effects from these two aspects in this work. Raman and XPS spectroscopy were utilized to characterize the SMSI underlying the supported assemblies.

For the Raman signal of CeO2, defect sites in the lattices would lead to a D mode at 598 cm$^{-1}$, which represents the Frenkel-type oxygen vacancies created by the relocation of oxygen anions from tetrahedral sites to octahedral sites, in addition to the intrinsic F2g mode at 465 cm$^{-1}$ (Figure 4). The intensity ratio $I(D)/I(F2g)$ thus represents the relative concentration of oxygen vacancies in the CeO2 lattices. Apart from Raman peaks at 465 and 598 cm$^{-1}$, there were two other peaks at 700 and 970 cm$^{-1}$, which could be assigned to the asymmetric structure of Ru−O−Ce.15,57 The intensity ratio of the peaks attributed to Ru−O−Ce (denoted as $I(Ru−O−Ce)$) and intrinsic F2g mode, $I(Ru−O−Ce)/I(F2g)$, can be used to...
represent the relative density of interfacial bonding (Figure 4d and Table S2). It is obvious that the three catalysts with different Ru sizes displayed distinct oxygen vacancy concentrations and that Ru(NC)/CeO₂ had the lowest concentration. There is no positive correlation between the methanation activity and the concentration of oxygen vacancy; thus, the rate-determining step is again proved to take place on the Ru sites rather than the oxygen vacancies. In spite of this, the oxygen vacancies all decreased greatly after CO₂ methanation (Figure 5 and Table S3), suggesting that the oxygen vacancies still actively participate in the methanation process. On the other hand, the density of Ru–O–Ce interfacial bonding directly reflects the chemical interaction of SMSI between Ru deposits and CeO₂ supports. The most extensive interfacial bonding was encountered in Ru(SA)/CeO₂ all along the reduction and methanation process, while the interfacial bonding intensity of Ru(NC)/CeO₂ was generally higher than that of Ru(NP)/CeO₂, indicating the weakened chemical interaction from CeO₂-supported single Ru atoms to large particles. In addition, the interfacial bonding after the reaction increased in Ru(SA)/CeO₂ and decreased in Ru(NC)/CeO₂ (Figure 4d and Table S2), demonstrating the reaction-induced enhancement and reduction of chemical interactions for Ru(SA)/CeO₂ and Ru(NC)/CeO₂, respectively.

The XPS characterizations gave results that were somewhat different from Raman observations. From Figure S7, a certain amount of Ce³⁺ ions was present on the surface of Ru(NC)/CeO₂ while the surface Ce⁴⁺ ions in Ru(SA)/CeO₂ and Ru(NP)/CeO₂ cannot even be detected. This phenomenon may be caused by the ex situ measurements of the reduced and reacted samples, since it has been proved that the uptake of O₂ by CeO₂ can take place at room temperature. The O₂ in the air readily altered the surface electronic states measured from XPS characterization, while the oxygen vacancies from Raman spectroscopy were generated via the relocation of oxygen anions and were hardly affected by the O₂ molecules at room temperature. The valences of Ru species from XPS, on the other hand, were also insensitive to the O₂ at room temperature, as can be inferred from the O₂-TPD and TPO profiles of the supported Ru species.

Thus, the XPS peaks of Ru 3d were deconvoluted to analyze the Ru species in different oxidation states, which were mainly composed of Ru(III) from RuCl₃, Ru(IV) from RuO₂, and Ru(VI) from RuO₃, with the average Ru valences decreasing from +4.1 in Ru(SA)/CeO₂ to +3.7 in Ru(NP)/CeO₂ on reduction by H₂ (Figure 5 and Table S3). Considering that the overlap between the C 1s and Ru 3d XPS pro

In general, the combined Raman and XPS analyses reveal the decreasing SMSI from Ru(SA)/CeO₂ to Ru(NP)/CeO₂, whether the electronic interactions of interfacial charge transfer from Ru deposits to CeO₂ supports or the chemical interactions arising from the density of interfacial bonding occur. In the methanation process, the SMSIs in Ru(SA)/CeO₂ and Ru(NC)/CeO₂ were respectively enhanced and reduced.

The H-spillover effect was examined by H₂-TPR and H₂-TPD measurements. In the reduction process, it can be observed that there were three main peaks centered at 140–170 °C (peak I), 220–280 °C (peak II), and around 430 °C (peak III) (Figure 6), which are attributed to the RuO₂ species strongly interacting with CeO₂ supports, the weakly interacting RuO₂ species, and the surface and subsurface oxygens on CeO₂. Respectively. There was also a shoulder peak at 114 or 117 °C caused by the oxygen adsorption (Figure 6). The reduction temperature of peak I was gradually lowered from 164 °C in Ru(SA)/CeO₂ to 144 °C in Ru(NP)/CeO₂, not in line with the variation of the SMSI or the oxidation states of the RuO₂ species in these systems. H-spillover effects at Ru sites have been reasoned to improve the reducibility under an H₂ atmosphere and in our observations, the H-spillover effects
also occurred to modify the reduction processes. Peak I also contains the H-spillover effect in which the H atoms chemically adsorbed on the RuO$_x$ species are transported to the surfaces. Ru(NP)/CeO$_2$ has the strongest H-spillover capability and thus the lowest temperature of peak II. However, the temperature decreased within 10 °C from Ru(SA)/CeO$_2$ to Ru(NC)/CeO$_2$ but was elevated nearly 50 °C for Ru(NP)/CeO$_2$, where the H-spillover no longer masked the effect of SMSI due to the large proportion of weakly interacting RuO$_x$ species in Ru(NP)/CeO$_2$. The weakest interaction in the interface accounted for the high temperature of peak II. Moreover, the intensity ratio of peak II to peak I grew systematically with the knowledge of the predominant interfacial effects in which the H-spillover effects display contrasting tendencies toward the SMSI from Ru(SA)/CeO$_2$ to Ru(NP)/CeO$_2$, which can be reasonably understood from the competition between Ru–H bond strength and Ru–O–Ce charge transfer at one Ru site.

More quantitatively, the amount of spilled hydrogens was determined by an H$_2$-TPD experiment (Figure S8). The desorption peaks centered at 41, 75, and 90 °C are attributed to the hydrogens adsorbed on the Ru species, and the broad peaks from 350 to 720 °C are those adsorbed on the CeO$_2$ supports as well as those spilled from the Ru sites to the supports. The H$_2$/M ratios of the Ru deposits and CeO$_2$ supports were calculated from the areas of the corresponding desorption peaks (Table S4). It can be seen that the H$_2$/Ru ratio decreased sharply from 0.61 to 0.16 in Ru(SA)/CeO$_2$ and Ru(NC)/CeO$_2$, accompanied by the increased H$_2$/ceria ratio from 0.03 to 0.06, suggesting the observable H-spillover effects in Ru(NC)/CeO$_2$. From Ru(NC)/CeO$_2$ to Ru(NP)/CeO$_2$, the H$_2$/Ru ratio further decreased to 0.14, although the H$_2$/ceria ratio also seemed slightly decreased. In combination with the results of H$_2$-TPR, the H-spillover effect was gradually augmented from Ru(SA)/CeO$_2$ to Ru(NC)/CeO$_2$ and Ru(NP)/CeO$_2$.

3.3. Reaction Pathways Dominated by the Activation of Metal Carbonyls and the Removal of H$_2$O Molecules.

With the knowledge of the predominant interfacial effects in the Ru/CeO$_2$ methanation catalysts, the influences exerted by the interfacial effects on the methanation activities were systematically surveyed via in situ DRIFTS measurements. The assignments of IR bands generally include three parts: that is, OH band, CO band, and formate and carbonate band (Table S5). The type I, type II, and type III OH refer to the terminal, bridged, and triply bridged hydroxyls, respectively. Type I and type II bicarbonates refer to those coordinated with the oxygen atom of hydroxyls and the other oxygen atom, respectively. To distinguish the active species in the reaction, the atmosphere was switched from reaction gases to H$_2$, with the active species vanishing rapidly (Figure 7 and Figures S9–S11). For Ru(SA)/CeO$_2$, the surface species under a reactive atmosphere were bidentate carbonates (1559, 1288 cm$^{-1}$), polydentate carbonates (1480–1450, 1396 cm$^{-1}$), inorganic carboxylates (1559, 1508, 1305 cm$^{-1}$), and a few bicarbonates (3623, 1396, 1048 cm$^{-1}$), with the bridged formates (3017, 2836, 1580, 1339 cm$^{-1}$) and formyl groups (1765 cm$^{-1}$) occurring later on (Figure 7a,d and Figure S9). When the gases were switched to H$_2$, the bands of type I bicarbonates, bidentate carbonates, bridged formates, formyl groups, and inorganic carboxylates obviously weakened while the others stayed unchanged. Thus, the former are the active species. The OH bands offer information on surface hydroxylation. The structure of Ce$^{3+}$–OH (3653 cm$^{-1}$) immediately disappeared within 1 min in the reaction flow (Figure S9b), and type I bicarbonates (3623 cm$^{-1}$) and type III OH (3590, 3583 cm$^{-1}$) were formed (Figure 7d and Figure S9b). Following the reaction, the intensity of H-bonded OH band (3426 cm$^{-1}$) gradually increased to a stabilized value, indicating the formation of a
network of H bonds. Under an H₂ atmosphere (Figure 7d and Figure S9b), the bicarbonates were quickly converted to bridged formates (3017 cm⁻¹), which decreased afterward, along with the complete consumption of H-bonded OH. Finally, the structure of Ce³⁺—OH appeared again (Figure S9b), accompanied by the increase of type I and II OH.

The reaction pathways of Ru(NC)/CeO₂ included the additional transformation from bridged formates (3016, 2854, 1542, 1327 cm⁻¹) to bridged carbonates (1191 cm⁻¹) (Figure S10a), and the proportion of formates was evidently reduced (Figure 7b), in comparison to that of Ru(SA)/CeO₂. Under the reaction atmosphere, type I OH (3728 cm⁻¹) and H-bonded OH (3436 cm⁻¹) increased simultaneously (Figure 7e and Figure S10b), representative of the surface that was partially covered by the H bond network with the other sites terminated by type I OH. On exposure to an H₂ atmosphere, the H bond network (3436 cm⁻¹) remained unreduced (Figure 7e and Figure S10b). Meanwhile, type I (3728 cm⁻¹) and type III OH (3594 cm⁻¹) species disappeared with a small amount of type II OH (3672 cm⁻¹) appearing (Figure S10b).

For Ru(NP)/CeO₂, the pathway from bridged formates (3017, 2841, 1540, 1340 cm⁻¹) to bidentate carbonates was missing, and polydentate carbonates still acted as spectators in the reaction (Figure 7c and Figure S11). Different from the above two catalysts, H-bonded OH groups (3456 cm⁻¹) were slightly formed only after the gas flow was switched to H₂, and almost no Ce³⁺—OH sites were regenerated (Figure S11b).

In addition, the active sites of the methanation catalysts were verified via steady-state DRIFTS experiments, where the catalysts were stabilized under the reactive atmosphere for 1 h from 50 to 300 °C (Figure S12). The band at 2847–2852 cm⁻¹, attributed to the bridged formate on CeO₂, disappeared at 200 °C. Another band at 3016 cm⁻¹ appeared and grew stronger from 200 to 300 °C. The latter is attributed to the bridged formate adsorbed at the interface of the Ru deposits and the CeO₂ supports, and the electrons donated by the Ru deposits to the Ce sites enhanced the stretching vibration of the C—H bond in the bridge formate, giving rise to the shift from 2847–2852 to 3016–3017 cm⁻¹. In combination with the observations that Eₗ varied greatly with the size of Ru deposits and that Ce³⁺—OH was immediately reacted after switching from CO₂/H₂/He to H₂/He, the specific active sites were the Ce³⁺—OH sites and Ru sites at the interface.

The conversion mechanism from adsorbed CO₂ to metal carbonyls deduced from DRIFTS results is summarized in Figure S13 and paths I–III, where the CO₂-derived type I bicarbonates are converted to bridged formates (path I), bidentate or bridged carbonates (path II), and inorganic carboxylates (path III) and then to Ru carbonyls. In the following equations, Oₗ denotes lattice oxygen atoms and asterisks denote the sites on the surfaces.

\[
\begin{align*}
\text{CO}_2 + \text{Ce}^{3+} - \text{OH} & \rightarrow \text{HCO}_3 - \text{Ce}^{3+} & \quad (\text{I-1}) \\
\text{HCO}_3 - \text{Ce}^{3+} & \rightarrow \text{HCO}_2 - \text{Ce}^{3+} + \text{O}_\text{L} & \quad (\text{I-2}) \\
\text{HCO}_2 - \text{Ce}^{3+} & \rightarrow \text{CO}_2 - \text{Ce}^{3+} + \text{H}^* & \quad (\text{I-3}) \\
\text{CO}_2 - \text{Ce}^{4+} + \text{H}^* + \text{Ru} & \rightarrow \text{Ru} - \text{CO} + \text{Ce}^{4+} - \text{OH} + * & \quad (\text{I-4}) \\
\text{CO}_2 + \text{Ce}^{3+} - \text{OH} & \rightarrow \text{HCO}_3 - \text{Ce}^{3+} & \quad (\text{II-1}) \\
\text{HCO}_3 - \text{Ce}^{3+} + * & \rightarrow \text{CO}_3 - \text{Ce}^{3+} + \text{H}^* & \quad (\text{II-2}) \\
\text{CO}_3 - \text{Ce}^{3+} + \text{H}^* + \text{Ru} & \rightarrow \text{Ru} - \text{CO} + \text{Ce}^{4+} - \text{OH} + \text{O}_\text{L} + * & \quad (\text{II-3}) \\
\end{align*}
\]

The Ru carbonyls are activated by chemisorbed H atoms, and formyl groups are generated, which are finally converted to CH₄ molecules. The overall methanation process is in line with the CO route that has been extensively discussed in the literature. Another possibility of the direct hydrogenation of bridged formates to produce CH₄ is not excluded, but it cannot be the major route because the characteristic band of methanol at 1008 cm⁻¹ was not detectable in our measurements. In the CO route, the activation of metal carbonyls is always identified as the rate-determining step. Nevertheless, the removal of the residual oxygen atom in CO₂ by H atoms to keep the mass balance of the methanation reaction (Figure S13), that is, the removal of H₂O molecules via the combination of H atoms and OH groups on the surfaces, is also quite important, and the step has been proved by kinetic modeling to be irreversible. This irreversible step after the rate-determining step is able to strongly affect the reaction rate as well. Thereby, the key elementary steps governing the methanation activity are

\[
\begin{align*}
\text{Ru} - \text{CO} + \text{H}^* & \rightarrow \text{Ru} - \text{CHO} + * & \quad (\text{i}) \\
\text{H}^* + *\text{OH} & \rightarrow \text{H}_2\text{O}^* + * & \quad (\text{ii}) \\
\text{H}_2\text{O}^* & \rightarrow \text{H}_2\text{O} + * & \quad (\text{iii}) \\
\end{align*}
\]

Accordingly, the carbon-containing species that was discovered to greatly hinder the methanation process in the kinetic measurements is likely to be metal carbonyl. Not only are the carbonyls the most difficult to activate but also each consumes one oxygen vacancy with the O atom left from the adsorbed CO₂ molecules. The oxygen vacancy provides the active site of Ce³⁺—OH in charge of CO₂ dissociation, while the other active site, i.e. the Ru site, hydrogenates the metal carbonyl synergistically.

The behavior of OH groups on the surface is closely affiliated with H₂O removal from the catalysts. As indicated by the OH bands in DRIFTS measurements, after a switch to an H₂ atmosphere, the H-bonded OH disappeared in Ru(SA)/CeO₂ (Figure 7d and Figure S9) but remained unchanged in Ru(NC)/CeO₂ (Figure 7e and Figure S10) and was slightly generated in Ru(NP)/CeO₂ (Figure S11). Thus, H-bonded OH was able to actively participate in the methanation process, and the observable H-spillover effects in Ru(NC)/CeO₂ and Ru(NP)/CeO₂ were again verified, in which the H-spillover effect contributed to the compensation and generation of H-bonded OH, respectively. On the other hand, the regeneration of Ce³⁺—OH sites under an H₂ atmosphere weakened from Ru(SA)/CeO₂ to Ru(NP)/CeO₂ (Figure 7d–f and Figures S9–S11). On exposure to the reactive atmosphere, the active sites of Ce³⁺—OH disappeared right away (Figures S9b–S11b) because the oxygen vacancies next to the Ce³⁺—OH sites were eliminated by the oxygen atoms dissociated from CO₂ molecules, and their regeneration under H₂ atmosphere
arose (Figure 7d–f and Figures S9b–S11b and S13) due to the removal of H2O molecules. Therefore, the removal of H2O molecules is thought to decrease from Ru(SA)/CeO2 to Ru(NP)/CeO2, with the simultaneous enhancement of H-spillover effect.

To analyze the ability of the three catalysts to activate carbonyls in the reaction, transient DRIFTS measurements after a switch from a CO2 atmosphere to an H2 atmosphere were conducted on the three catalysts. CO2 instead of the reaction atmosphere guarantees that the carbonyls derived from CO2 are all preserved and later activated by chemisorbed H atoms. The activation ability could be compared from the extinction speeds of the CO band at 2000–1800 cm\(^{-1}\) (Figure 8 and Figure S14). The strongest CO band emerging in the CO2/He atmosphere was located at around 1850 cm\(^{-1}\) (Figure 8), a quite low wavenumber in comparison to that in the former DRIFTS experiment. This is because the dissociation of CO2 molecules without H assistance under the experimental conditions is relatively slowed and the small quantity of carbonyls was attached to Ru sites in bridged forms. On introduction of H2, all of the CO bands rapidly dropped to a rather low intensity within 1 min (Figure S14), and the CO band at around 1950 cm\(^{-1}\) (Figure 8) was left over, which was attributed to the linearly adsorbed carbonyls. Therefore, the bridged carbonyls are much more active than the linearly adsorbed carbonyls. The latter, however, were mainly observed under the reaction atmosphere; therefore, the hydrogenation of the latter carbonyls determines the general activation ability of Ru carbonyls to a great extent. On comparison of the extinction of the linearly adsorbed CO bands for the three catalysts, the band on Ru(NP)/CeO2 was the fastest to become extinct, and those on the other two catalysts were similar to each other in extinction rate. In combination with the extinction speeds of bridged CO bands, the activation ability of Ru carbonyls follows the sequence Ru(SA)/CeO2 < Ru(NC)/CeO2 < Ru(NP)/CeO2. In addition, the constant frequency of the Ru–CO band during CO2 adsorption (Figure 8) also certifies that CO2 molecules are mainly adsorbed on the CeO2 supports, not on the Ru deposits, for their dissociative adsorption on the Ru deposits would cause a change in Ru valences and shift in Ru–CO bands.

3.4. Competition of SMSI and H-Spillover Effect in Determining the Methanation Activity.

With regard to the mechanistic understanding of the internal causes of the carbonyl activation and H2O removal in determining the methanation activities, first-principles DFT calculations were carried out on the basis of the models of Ru1, Ru4, and Ru14 supported on the CeO2(110) slabs. Though the sizes of the models and the samples varied to some extent, the variations of the two effects were both monotonous with the metal size experimentally, which ensures that the calculations based on current models are indicative of the practical catalysts.39,42 The Ru deposits with certain amounts of Ru–O coordination were charged positively, which we ascribed to the strong interaction between the Ru deposits and the oxygen atoms in the Ru–CeO2 interface,31,42,85 with no consideration of oxygen atoms on top of the deposits. Bader charge analyses of the three models proved the correlation between the SMSI and the carbonyl activation on the Ru deposits. The most intense SMSI of Ru14/CeO2 was disclosed by the most positive charge, +0.55 e
on the Ce atom, and the least positive average charge was found for Ce atoms next to the Ru deposits (Figure 9). Correspondingly, the CO adsorbed on Ru1/CeO2 had the most positively charged C atom (+0.85 e) (Figure S15a–c) and the least binding energy (−153 kJ mol⁻¹) (Table S6), which is not advantageous to CO activation. The CO molecules on Ru1/ CeO2 and Ru14/CeO2, however, gained more electrons from the Ru deposits and were moderately stabilized by the adsorption configuration, on which the activation of the C=O bond would be largely facilitated. Thus, the electrons donated from the Ru deposits to the adsorbed CO molecules increase from highly oxidized single atoms to largely reduced nanoparticles, which leads to the improved carbonyl activation.

On the other hand, the H-spillover effect was found to greatly affect the removal of H₂O molecules. The H-spillover process is closely related to the H coverage on the surface.⁸⁶ To approximate the real process as much as possible, the number of H atoms residing on the Ru deposits in the final states of spillover was estimated according to the H₂/Ru ratio from H₂-TPD experiments, which gave n(H) values on Ru1/CeO2, Ru4/ CeO2, and Ru14/CeO2 of 1.22, 1.28, and 3.92, respectively. Thus, one H atom was placed on Ru1 and Ru4, while four H atoms were placed on Ru14 in the final state. The H-spillover process was designed to start from H₂ dissociation to chemisorbed H atoms (*H*ₜₜ), with one H atom diffusing to the interface (*H*ₜ) and finally to the neighboring ceria sites (*H*ₜₜₜ) to form surface hydroxyls (Figure 10). The spillover energetics of Ru14/CeO₂ was the most favored due to the evident stabilization effect of H₂ molecules, and its energy was 146 kJ mol⁻¹ lower than that of Ru1/CeO₂ and 176 kJ mol⁻¹ lower than that of Ru4/CeO₂. The stabilization effect is explained by the abundant electrons donated by larger Ru deposits to the H₂ molecules, as can be seen from the Bader charge analyses of the model catalysts (Figure S16a,c,e). The average valences of *H*ₜₜ atoms in Ru₁/CeO₂, Ru₄/CeO₂, and Ru₁₄/CeO₂ were −0.16, −0.20, and −0.28 e, respectively. It is reasonably speculated that the excess electrons from Ru₁₄ fill the antibonding orbitals of the H₂ molecules and that H₂ chemisorption is largely facilitated and stabilized. For the effect of H-spillover on H₂O removal, the densities of states (DOSs) projected on the *H*ₜₜ atoms that were ready for the next spillover were compared (Figure S16b,d,f). The 1s orbitals of the *H*ₜₜ atoms entirely shifted to lower energies and away from the Fermi level from Ru₁/CeO₂ to Ru₄/CeO₂ and Ru₁₄/CeO₂, indicating the decreasing reactivities of the *H*ₜₜ atoms,⁷ which finally give rise to the weakened H₂O removal.⁸⁸,⁸⁹

Hence, the SMSI and H-spillover effects are augmented respectively in CeO₂-supported single Ru atoms and large Ru nanoparticles, and the two effects respectively affect the activation of metal carbonyls and the dehydration of the surfaces in the opposite directions, exerting a combining influence on the methanation activities (Scheme 1). Only when the two effects achieve a balance, as was the case in Ru(NC)/ CeO₂, could the methanation activity be promoted to the optimal value.

Scheme 1. Competitive SMSI and H-Spillover Effect Lead to Competing CO Activation and Surface Dehydration for CeO₂-Supported Single Ru Atoms, Ru Nanoclusters, and Large Ru Nanoparticles

![Diagram](https://example.com/diagram.png)

Figure 10. Energy profiles and corresponding structures in the process of H-spillover on Ru1/CeO2 (black line and the first row), Ru4/CeO2 (red line and the second row), and Ru14/CeO2 (blue line and the third row) in a top view. Ru (blue spheres), Ce (yellow spheres), O (red spheres), and H (pink spheres) atoms are shown.

4. CONCLUSIONS

The interfacial effects of CO₂ methanation on highly active Ru/ CeO₂ catalysts in different size regimes were systematically investigated, among which the SMSI and H-spillover effects were demonstrated to competitively determine the methanation activities. In comparison with the activity change caused by the nonequivalent doping of CeO₂ supports, that due to the variation of Ru size regimes is more notable, demonstrating that the rate-determining step takes place on the Ru deposits rather than the surfaces of the supports. The TOFs of CeO₂-supported single Ru atoms, Ru nanoclusters, and Ru nanoparticles at 190 °C are 4.59 × 10⁻³, 7.41 × 10⁻³, and 5.30 × 10⁻³ s⁻¹, respectively, with 100% CH₄ selectivity. On the other hand, the negative CO₂ reaction orders decrease in absolute values and turn positive from supported single Ru atoms to nanoparticles, while the positive H₂ reaction orders increase, which demonstrates the gradually eliminated hindrance of CO₂-derived intermediates and the weighted dependence on H₂ partial pressure. The spectroscopic experiments provided mechanistic insights into the interfacial effects leading to the...
activity differences. Above all, the dominant reaction pathway is the CO route, where the metal carbonyls are the critical intermediates and the active sites are CeIII−OH sites and Ru sites near the metal—support interfaces responsible for CO\textsubscript{2} dissociation and carbonyl hydrogenation, respectively. The SMSI is the strongest for CeO\textsubscript{2} -supported single Ru atoms, regardless of the electronic interaction of charge transfer via Ru−O−Ce or the chemical interactions arising from the density of interfacial bonding. Among them, the electronic interaction evidently alters the activation ability of metal carbonyls, the rate-determining step in CO routes, and strong interfacial charge transfer is disadvantageous for carbonyl activation. In addition, H-spillover effects are present in both CeO\textsubscript{2}-supported Ru nanoclusters and nanoparticles in the reaction, with the intensity much more enhanced in the latter assembly, where the removal of H\textsubscript{2}O molecules is greatly hindered. The SMSI and H-spillover effects are actually in a competitive relationship, just as there is competition between Ru−H bond strength and charge transfer via Ru−O−Ce. The two factors lead to the reverse variations of metal carbonyl activation and H-spillover effects for the methanation catalysts in different size regimes, which are balanced at CeO\textsubscript{2}-supported Ru nanoclusters to exhibit superior low-temperature methanation activity. This work illuminates the significant catalytic activity differences in the extended size regimes, which notably broadens the horizon in engineering high-performance supported metal catalysts applied in a broad scope of heterogeneous catalytic reactions from the perspective of size sensitivity and intrinsically tunable interfacial effects between metal and supports.

REFERENCES

(11) Wu, C.; Zhang, Z.; Zhu, Q.; Han, H.; Yang, Y.; Han, B. Highly Efficient Hydrogenation of Carbon Dioxide to Methyl Formate over Supported Gold Catalysts. Green Chem. 2015, 17, 1467−1472.

(14) Tada, S.; Ochieng, O. J.; Kikuchi, R.; Haneda, T.; Kameyama, H. Promotion of CO\textsubscript{2} Methanation activity and CH\textsubscript{4} Selectivity at Low Temperatures over Ru/CeO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3} catalysts. Int. J. Hydrogen Energy 2014, 39, 10900−10100.

